TensorFlow2.0正式版发布,极简安装TF2.0(CPUGPU)教程
作者 | 小宋是呢
转载自CSDN博客
【导读】TensorFlow 2.0,昨天凌晨,正式放出了2.0版本。不少网友表示,TensorFlow 2.0比PyTorch更好用,已经准备全面转向这个新升级的深度学习框架了。
windows推荐地址:https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-4.7.10-Windows-x86_64.exe
ubuntu推荐地址:https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-4.7.10-Linux-x86_64.sh
Mac os推荐地址:https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-4.7.10-MacOSX-x86_64.pkg

查看conda环境:conda env list
新建conda环境(env_name就是创建的环境名,可以自定义):conda create -n env_name
激活conda环境(ubuntu与Macos 将conda 替换为source):conda activate env_name
退出conda环境:conda deactivate
安装和卸载python包:conda install numpy # conda uninstall numpy
查看已安装python列表:conda list -n env_name
conda create -n TF_2C python=3.6
conda activate TF_2C
pip install tensorflow==2.0.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
import tensorflow as tf
version = tf.__version__
gpu_ok = tf.test.is_gpu_available()
print("tf version:",version,"\nuse GPU",gpu_ok)
tf version: 2.0.0
use GPU False
conda create -n TF_2G python=3.6
conda activate TF_2G
conda install cudatoolkit=10.0 cudnn
pip install tensorflow-gpu==2.0.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
import tensorflow as tf
version = tf.__version__
gpu_ok = tf.test.is_gpu_available()
print("tf version:",version,"\nuse GPU",gpu_ok)
tf version: 2.0.0
use GPU True
import tensorflow as tf X = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
y = tf.constant([[10.0], [20.0]]) class Linear(tf.keras.Model): def __init__(self): super().__init__() self.dense = tf.keras.layers.Dense( units=1, activation=None, kernel_initializer=tf.zeros_initializer(), bias_initializer=tf.zeros_initializer() ) def call(self, input): output = self.dense(input) return output # 以下代码结构与前节类似
model = Linear()
optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)
for i in range(100): with tf.GradientTape() as tape: y_pred = model(X) # 调用模型 y_pred = model(X) 而不是显式写出 y_pred = a * X + b loss = tf.reduce_mean(tf.square(y_pred - y)) grads = tape.gradient(loss, model.variables) # 使用 model.variables 这一属性直接获得模型中的所有变量 optimizer.apply_gradients(grads_and_vars=zip(grads, model.variables)) if i % 10 == 0: print(i, loss.numpy())
print(model.variables)
输出结果如下:
10 0.73648137
20 0.6172349
30 0.5172956
40 0.4335389
50 0.36334264
60 0.3045124
70 0.25520816
80 0.2138865
90 0.17925593
[<tf.Variable 'linear/dense/kernel:0' shape=(3, 1) dtype=float32, numpy=
array([[0.40784496], [1.191065 ], [1.9742855 ]], dtype=float32)>, <tf.Variable 'linear/dense/bias:0' shape=(1,) dtype=float32, numpy=array([0.78322077], dtype=float32)>]
◆
精彩推荐
◆

推荐阅读
深度学习面临天花板,亟需更可信、可靠、安全的第三代AI技术|AI ProCon 2019
学点基本功:机器学习常用损失函数小结
AI落地遭“卡脖子”困境:为什么说联邦学习是解决良方?
10分钟搭建你的第一个图像识别模型 | 附完整代码
阿里披露AI完整布局,飞天AI平台首次亮相
程序员因接外包坐牢 456 天!两万字揭露心酸经历
限时早鸟票 | 2019 中国大数据技术大会(BDTC)超豪华盛宴抢先看!
Pandas中第二好用的函数 | 优雅的Apply
阿里开源物联网操作系统 AliOS Things 3.0 发布,集成平头哥 AI 芯片架构
雷声大雨点小:Bakkt「见光死」了吗?

你点的每个“在看”,我都认真当成了喜欢
相关文章:

javascript全栈开发实践-准备
目标: 我们将会通过一些列教程,在只使用JavaScript开发的情况下,实现一个手写笔记应用。该应用具有以下特点: 全平台,有手机客户端(Android/iOS),Windows,macOSÿ…

POJ 1017 Packets 贪心 模拟
一步一步模拟,做这种题好累 先放大的的,然后记录剩下的空位有多少,塞1*1和2*2的进去 //#pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio> #include<cstring> #include<cstdlib> #incl…

NLP被英语统治?打破成见,英语不应是「自然语言」同义词
(图片付费下载自视觉中国)作者 | Emily M. Bender译者 | 陆离责编 | 夕颜出品 | AI科技大本营(ID: rgznai100) 【导读】在NLP领域,多资源语言以英语、汉语(普通话)、阿拉伯语和法语为代表&#…

CUDA Samples: Dot Product
以下CUDA sample是分别用C和CUDA实现的两个非常大的向量实现点积操作,并对其中使用到的CUDA函数进行了解说,各个文件内容如下:common.hpp:#ifndef FBC_CUDA_TEST_COMMON_HPP_ #define FBC_CUDA_TEST_COMMON_HPP_#include<random>templa…

element ui只输入数字校验
注意:圈起来的两个地方,刚开始忘记写typenumber了,导致可以输入‘123abc’这样的,之后加上了就OK了 转载于:https://www.cnblogs.com/samsara-yx/p/10774270.html

对DeDecms之index.php页面的补充
2019独角兽企业重金招聘Python工程师标准>>> 1、301是什么? 其实就是HTTP状态表。就是当用户输入url请求时,服务器的一个反馈状态。 详细链接http://www.cnblogs.com/kunhony/archive/2006/06/16/427305.html 2、common.inc.php和arc.partvi…

OpenCV-Python:K值聚类
关于K聚类,我曾经在一篇博客中提到过,这里简单的做个回顾。 KMeans的步骤以及其他的聚类算法 K-均值是因为它可以发现k个不同的簇,且每个簇的中心采用簇中所含值的均值计算 其他聚类算法:二分K-均值 讲解一下步骤,其实…
CUDA Samples: Julia
以下CUDA sample是分别用C和CUDA实现的绘制Julia集曲线,并对其中使用到的CUDA函数进行了解说,code参考了《GPU高性能编程CUDA实战》一书的第四章,各个文件内容如下:funset.cpp:#include "funset.hpp" #include <rand…

给初学者的深度学习入门指南
从无人驾驶汽车到AlphaGo战胜人类,机器学习成为了当下最热门的技术。而机器学习中一种重要的方法就是深度学习。作为一个有理想的程序员,若是不懂人工智能(AI)领域中深度学习(DL)这个超热的技术,…

epoll/select
为什么80%的码农都做不了架构师?>>> epoll相对select优点主要有三: 1. select的句柄数目受限,在linux/posix_types.h头文件有这样的声明:#define __FD_SETSIZE 1024 表示select最多同时监听1024个fd。而epoll没…
CUDA Samples: ripple
以下CUDA sample是分别用C和CUDA实现的生成的波纹图像,并对其中使用到的CUDA函数进行了解说,code参考了《GPU高性能编程CUDA实战》一书的第五章,各个文件内容如下:funset.cpp:#include "funset.hpp" #includ…

Python告诉你这些旅游景点好玩、便宜、人又少!
(图片由CSDN付费下载自东方IC)作者 | 猪哥来源 | 裸睡的猪(ID:IT--Pig) 2019年国庆马上就要到来,今年来点新花样吧,玩肯定是要去玩的,不然怎么给祖国庆生?那去哪里玩&…

手机APP自动化之uiautomator2 +python3 UI自动化
题记: 之前一直用APPium直到用安卓9.0 发现uiautomatorviewer不支持安卓 9.0,点击截屏按钮 一直报错,百度很久解决方法都不可以,偶然间看见有人推荐:uiautomator2 就尝试使用 发现比appium要简单一些; 下面…

爱上MVC3系列~开发一个站点地图(俗称面包屑)
回到目录 原来早在webform控件时代就有了SiteMap这个东西,而进行MVC时代后,我们也希望有这样一个东西,它为我们提供了不少方便,如很方便的实现页面导航的内容修改,页面导航的样式换肤等. 我的MvcSiteMap主要由实体文件,XML配置文件,C#调用文件组成,当然为了前台使用方便,可以为…

Django web框架-----Django连接现有mysql数据库
第一步:win10下载mysql5.7压缩包配置安装mysql,创建数据库或导入数据库 第二步:win10搭建django2.1.7开发环境,创建项目为mytestsite,创建应用app为quicktool 第三步:编辑与项目同名的文件夹的配置文件&…
CUDA Samples: green ball
以下CUDA sample是分别用C和CUDA实现的生成的绿色的球图像,并对其中使用到的CUDA函数进行了解说,code参考了《GPU高性能编程CUDA实战》一书的第五章,各个文件内容如下:funset.cpp:#include "funset.hpp" #include <r…

ICLR 2020论文投稿2600篇,GNN、BERT、Transformer领跑热门研究方向
(图片由AI科技大本营付费下载自视觉中国)出品 | AI科技大本营(ID:rgznai100)2019 年 4,ICLR 2020 论文征集活动开始,截止 9 月 25 日,大会共收到近 2600 篇投稿,相比 ICL…

android环境安装之android4.2安装(转)
准备学习android,着手安装android时听说很麻烦,在网上看了很多android安装说明,都是android比较早的版本,我这里安装了android4.2,简单记录一下。 安装分为几步,首先申明,安装时最好保持网络畅通…

如何创建一个百分百懂你的产品推荐系统 | 深度教程(附代码详解)
(图片由AI科技大本营付费下载自视觉中国)来源 | 读芯术(ID:AI_Discovery)你也许每天都会逛一逛电子商务网站,或者从博客、新闻和媒体出版物上阅读大量文章。浏览这些东西的时候,最令读者或者用户…
CUDA Samples: Ray Tracking
以下CUDA sample是分别用C和CUDA实现的生成光线跟踪图像,并对其中使用到的CUDA函数进行了解说,code参考了《GPU高性能编程CUDA实战》一书的第六章,CUDA各实现包括了使用常量内存和不使用常量内存两种方法,各个文件内容如下&#x…

从产品的适用性以及费用方面考虑
物联宇手持终端在对比性价比高低应该从产品的适用性以及费用方面考虑。不过在选择时不一定要整机,可以按实际需求让厂商定做和行业需要功能的手持机,这样有针对性的定制更能体现整体的性价效率。转载于:https://blog.51cto.com/14222294/2386642

杨学海:跨境电商新通道-进口保税直邮模式解析
为什么80%的码农都做不了架构师?>>> 杨学海:跨境电商新通道-进口保税直邮模式解析 广州威云供应链管理公司总经理杨学海在第九届中国中小企业电子商务大会上表示,其品牌海外通要为跨境电子商务提供一个更加快速、便捷、低成本&am…
CUDA Samples: heat conduction(模拟热传导)
以下CUDA sample是分别用C和CUDA实现的模拟热传导生成的图像,并对其中使用到的CUDA函数进行了解说,code参考了《GPU高性能编程CUDA实战》一书的第七章,各个文件内容如下:funset.cpp:#include "funset.hpp" #include <…

2020应届生:今年秋招也太太太太太难了吧!
讲个简短的鬼故事:2020秋招已经过去一大半了!回顾9月,你可能以为秋招还有很多机会,还有大把时间准备。然而各大名企的实际进度却不等人。阿里巴巴9月12日网申截止;腾讯9月15日网申截止;宝洁9月20日关闭网申…

PDF文字怎么编辑,PDF文档编辑方法
有时候遇到PDF文件不是自己制作的或者是制作的有点匆忙,会有文字遗漏或者打错的时候,我们使用就会有点麻烦就需要把文件中的文字进行编辑修改,那么具体怎么做呢?小伙伴们都挺好奇吧,今天就来跟大家分享一下。操作软件&…

浏览器是怎样工作的:渲染引擎,HTML解析
2019独角兽企业重金招聘Python工程师标准>>> 渲染引擎 渲染引擎的职责是……渲染,也就是把请求的内容显示到浏览器屏幕上。 默认情况下渲染引擎可以显示HTML,XML文档以及图片。 通过插件(浏览器扩展)它可以显示其它类型…
CUDA Samples: Calculate Histogram(atomicAdd)
以下CUDA sample是分别用C和CUDA实现的计算一维直方图,并对其中使用到的CUDA函数进行了解说,code参考了《GPU高性能编程CUDA实战》一书的第九章,各个文件内容如下:funset.cpp:#include "funset.hpp" #include <rando…

glusterfs基本操作
基本操作 集群节点 扩展集群 1,必须做hosts域名解析其实通过IP地址也能做集群,但是不建议这种方式. 192.168.1.210 glusterfs04 2, 添加节点到集群中,在当前所有集群节点中都需要执行 gluster peer probe glusterfs04 3,查看对等状态 gluster peer status 查看集群节点信息 gl…

100多次竞赛后,他研发了一个几乎可以解决所有机器学习问题的框架
(图片由AI科技大本营付费下载自视觉中国)作者 | XI YANG来源 | 知乎(机器学习之路)一个叫 Abhishek Thakur 的数据科学家,在他的 Linkedin 发表了一篇文章 Approaching (Almost) Any Machine Learning Problem…

mysql中char与varchar的区别分析(补充一句,int和integer没区别)
转自:http://www.jb51.net/article/23575.htm 在mysql教程中char与varchar的区别呢,都是用来存储字符串的,只是他们的保存方式不一样罢了,char有固定的长度,而varchar属于可变长的字符类型。har与varchar的区别 &#…