当前位置: 首页 > 编程日记 > 正文

讲解Cause: invalid code lengths set

目录

讲解Cause: invalid code lengths set

Huffman编码简介

"invalid code lengths set"错误的原因

解决"invalid code lengths set"错误

总结


讲解Cause: invalid code lengths set

当我们在处理数据压缩或者解压缩的过程中,有时会遇到一个错误消息:"Cause: invalid code lengths set"。这个错误通常与Huffman编码相关,表示我们在使用Huffman编码进行数据解码时遇到问题。

Huffman编码简介

在理解"invalid code lengths set"错误之前,先来了解一下Huffman编码的基本原理。 Huffman编码是一种无损数据压缩算法,通过对数据中的符号进行变长编码来实现压缩。这种编码方式基于符号出现频率的统计信息,将出现频率较高的符号用较短的编码表示,而出现频率较低的符号则用较长的编码表示。 Huffman编码的生成过程包括以下几个步骤:

  1. 统计所有符号的出现频率;
  2. 根据频率构建一个频率树,以频率作为树的权值;
  3. 通过树的节点路径来确定每个符号的编码,经常使用0表示向左走,1表示向右走。

"invalid code lengths set"错误的原因

当我们在进行Huffman解码时,需要使用编码表来将编码转换为原始符号。而在解码过程中,有时会遇到某个符号的编码长度错误的情况,即"invalid code lengths set"错误。 这个错误通常有以下几个可能的原因:

  1. 数据损坏:在数据传输或者存储过程中,数据可能被意外地损坏。这导致了编码表中的某些编码长度的数据被篡改或者丢失,从而导致无法正确解码。
  2. 编码表错误:如果在编码表的生成过程中出现错误,比如在统计符号频率或者构建频率树时出现错误,会导致编码表中的编码长度设置错误。
  3. 解码算法实现错误:解码算法的实现有时可能存在漏洞或者错误,导致在解码过程中无法正确地解析编码长度的设置。

解决"invalid code lengths set"错误

要解决"invalid code lengths set"错误,我们需要进行以下的措施:

  1. 检查数据完整性:首先,我们需要检查数据的完整性,确保数据没有被损坏。可以使用校验和或者哈希值等方法来验证数据的完整性。
  2. 检查编码表生成过程:如果数据完整性没有问题,我们需要检查编码表的生成过程。确保在统计符号频率和构建频率树的过程中没有出现错误。
  3. 检查解码算法实现:如果编码表没有问题,我们需要仔细检查解码算法的实现。确保解码算法能正确解析编码长度的设置,以及能够处理各种边界情况。
  4. 调试和测试:如果以上步骤都没有找到问题,我们可以使用调试和测试工具对代码进行详细分析,以确定错误具体出现的地点和原因。

以下是一个示例代码,展示了如何使用Huffman编码进行数据压缩和解压缩,并处理可能出现的"invalid code lengths set"错误。

pythonCopy code
import heapq
import collections
# 构建Huffman树
def build_huffman_tree(freq):
    heap = [[weight, [symbol, ""]] for symbol, weight in freq.items()]
    heapq.heapify(heap)
    while len(heap) > 1:
        lo = heapq.heappop(heap)
        hi = heapq.heappop(heap)
        for pair in lo[1:]:
            pair[1] = '0' + pair[1]
        for pair in hi[1:]:
            pair[1] = '1' + pair[1]
        heapq.heappush(heap, [lo[0] + hi[0]] + lo[1:] + hi[1:])
    return sorted(heapq.heappop(heap)[1:], key=lambda p: (len(p[-1]), p))
# 使用Huffman编码压缩数据
def compress(data):
    freq = collections.Counter(data)
    huff_tree = build_huffman_tree(freq)
    huff_dict = {}
    for symbol, code in huff_tree:
        huff_dict[symbol] = code
    code = ''.join(huff_dict[s] for s in data)
    return code, huff_dict
# 使用Huffman编码解压缩数据
def decompress(code, huff_dict):
    rev_dict = {v:k for k, v in huff_dict.items()}
    res = ""
    curr_code = ""
    for bit in code:
        curr_code += bit
        if curr_code in rev_dict:
            res += rev_dict[curr_code]
            curr_code = ""
    return res
# 示例应用场景
data = "This is a sample text for compression"
compressed_code, huff_dict = compress(data)
print("Compressed code:", compressed_code)
# 模拟"invalid code lengths set"错误:修改编码表
huff_dict['e'] = '01'  # 修改 'e' 的编码长度
decompressed_data = decompress(compressed_code, huff_dict)
print("Decompressed data:", decompressed_data)

在上述示例中,我们首先定义了几个函数,包括build_huffman_tree用于构建Huffman树,compress用于使用Huffman编码压缩数据,decompress用于解压缩数据。然后,我们模拟了一个应用场景,对样本文本进行数据压缩并进行解压缩。 在解压缩过程中,我们故意修改了编码表中 'e' 的编码长度,即模拟了出现了"invalid code lengths set"错误的情况。最终,我们将处理后的压缩数据进行解压缩,并输出结果。可以看到,在修改编码表后,我们无法正确地解码数据,结果出现了错误。 这个示例向我们展示了如何使用Huffman编码进行数据压缩和解压缩,并模拟了"invalid code lengths set"错误的场景,以便我们更好地理解和调试这个问题。通过修改编码表和验证解码结果的正确性,我们可以找到并解决错误,确保数据的正确解压缩。

Huffman编码是一种用于数据压缩的算法,通过使用可变长度的编码来表示不同的符号,以实现有效的压缩。该算法由David A. Huffman在1952年提出,并被广泛用于各种应用中,如无损压缩、数据传输和存储等。 Huffman编码的基本思想是根据符号出现的频率来构建一棵Huffman树,并根据树的结构生成相应的编码。在Huffman树中,频率较高的符号被赋予较短的编码,而频率较低的符号则被赋予较长的编码。这样,出现频率高的符号可以使用较少的位数来表示,从而达到数据压缩的效果。 Huffman编码的过程可以分为以下几个步骤:

  1. 统计符号的频率:对待压缩的数据进行扫描,统计每个符号出现的频率。
  2. 构建Huffman树:根据符号的频率构建一个最小堆(或者最小优先队列),每次从堆中选择频率最小的两个节点,合并成一个新节点,并更新频率为两个节点的频率之和。重复这个过程,直到堆中只剩下一个节点,即构建出了完整的Huffman树。
  3. 生成编码:从Huffman树的根节点开始,遍历树的每个分支,为左分支赋予'0'的编码,为右分支赋予'1'的编码。沿着树的路径找到每个符号所对应的叶子节点,即获取了每个符号的Huffman编码。
  4. 压缩数据:使用生成的Huffman编码,将待压缩的数据替换为对应的二进制编码。由于Huffman编码是可变长度的,所以相同长度的编码不会有冲突,可以唯一地表示每个符号。
  5. 解压数据:使用对应的Huffman编码表,将压缩后的二进制数据逐个解码为原始的符号,重新恢复出原始数据。 Huffman编码的优势在于,它可以根据符号出现的频率动态调整编码长度,使得频率高的符号使用较短的编码,从而实现更高的压缩比。它是一种无损压缩算法,能够完全还原压缩前的数据。 然而,Huffman编码也有一些限制。由于使用了可变长度的编码,解码时需要逐位地进行比较,因此对于大数据量或高频率的符号,解码速度可能会变慢。此外,Huffman编码需要额外的存储空间来存储编码表,对于一些特别小的数据集,可能没有压缩的效益。 总的来说,Huffman编码是一种简单而有效的数据压缩算法,适用于各种应用场景。通过统计符号的频率和构建Huffman树,它能够实现对数据的高效压缩和解压缩,节省存储空间和传输带宽。

总结

"invalid code lengths set"错误是在使用Huffman编码进行数据解码时可能遇到的一种错误。我们需要检查数据的完整性、编码表生成过程和解码算法的实现来解决这个问题。通过仔细的查找错误原因和进行调试和测试,我们可以找到并修复这个错误,使得我们的数据能够正确地进行解压缩或者解码。了解这个错误的原因和解决方法,对于进行数据压缩和解压缩的开发人员非常重要。

相关文章:

并发编程下的集合:数组寻址、LinkedList、HashMap、ConcurrentHashMap

如果发现hash取模后的数组索引位下无元素则直接新增,若不是空那就说明存在hash冲突,则判断数组索引位链表结构中的第一个元素的key以及hash值是否与新的key一致则直接覆盖,若不一致则判断当前的数组索引下的链表结构是否为红黑树,若为红黑树则走红黑树的新增方法,若不为红黑树则遍历当前链表结构,遍历中发现某个节点元素的next为null是则直接将新元素指针与next进行关联,若在遍历到next为空前判断到,某个节点的key以及key的hash值与新的key与新的keyhash值一致时则走覆盖。

【日常开发之插件篇】IDEA plugins 神器助我!!

今早因为老代码的一些bug让我突然觉得Idea的一些插件特别好用,我准备将我平时所用到的一些插件做个推荐以及记录。

【日常开发之FTP】Windows开启FTP、Java实现FTP文件上传下载

FTP是一个专门进行文件管理的操作服务,一般来讲可以在任意的操作系统之中进行配置,但是如果考虑到简便性,一般来讲可以直接在Linux系统下进行安装。FTP (File Transfer Protocol、文件传输协议)是TCP/IP协议中的一部分,属于应用层协议。使用FTP最主要的功能是对文件进行管理,所以在FTP内部对于文件支持有两种传输模式:文本模式(ASCII、默认)和二进制模式(Binary),通常文本文件使用ASCIl模式,而对于图片、视频、声音、压缩等文件则会使用二进制的方式进行传输。

【Linux之升华篇】Linux内核锁、用户模式与内核模式、用户进程通讯方式

alloc_pages(gfp_mask, order),_ _get_free_pages(gfp_mask, order)等。字符设备描述符 struct cdev,cdev_alloc()用于动态的分配 cdev 描述符,cdev_add()用于注。外,还支持语义符合 Posix.1 标准的信号函数 sigaction(实际上,该函数是基于 BSD 的,BSD。从最初的原子操作,到后来的信号量,从。(2)命名管道(named pipe):命名管道克服了管道没有名字的限制,因此,除具有管道所具有的。

【Mongdb之数据同步篇】什么是Oplog、Mongodb 开启oplog,java监听oplog并写入关系型数据库、Mongodb动态切换数据源

oplog是local库下的一个固定集合,Secondary就是通过查看Primary 的oplog这个集合来进行复制的。每个节点都有oplog,记录这从主节点复制过来的信息,这样每个成员都可以作为同步源给其他节点。Oplog 可以说是Mongodb Replication的纽带了。

【日常开发之Windows共享文件】Java实现Windows共享文件上传下载

下拉框选择你选择的用户点击添加,然后共享确定。创建一个文件夹然后点击属性界面,点击共享。maven版本存在于SMB协议的兼容问题。首先开启服务,打开控制面板点击程序。点击启用或关闭Windows功能。我这边是专门创建了一个用户。SMB1.0选中红框内的。

CXFServlet类的作用

CXFServlet是Apache CXF框架中的一个核心组件,用于处理HTTP请求并将它们转换为Web服务调用。通过配置CXFServlet,你可以轻松地部署和管理SOAP和RESTful Web服务。

@Scheduled注解的scheduler属性什么作用

注解是 Spring Framework 提供的一种机制,用于定义计划任务,即周期性执行的任务。 注解可以应用于方法上,以指示 Spring 容器在特定的时间间隔或按照某种调度规则来调用该方法。 属性是 注解的一个可选属性,它的作用是允许开发者指定一个自定义的 对象来控制任务的调度方式。默认情况下, 注解使用 Spring 内部的 来执行任务,但如果需要更高级的定制化需求,可以通过 属性指定一个自定义的 实现。自定义调度器:共享调度器资源:高级调度需求:假设你想使用 作为调度器,并且希望所有带有

Ubuntu下安装和配置Redis

找到 /ect/redis/redis.conf 文件修改如下:注释掉 127.0.0.1 ,如果不需要远程连接redis则不需要这个操作。使用客户端向 Redis 服务器发送一个 PING ,如果服务器运作正常的话,会返回一个 PONG。默认情况下,Redis服务器不允许远程访问,只允许本机访问,所以我们需要设置打开远程访问的功能。执行sudo apt-get install redis-server 安装命令。查看 redis 是否启动,重新打开一个窗口。停止/启动/重启redis。

过滤器、拦截器、aop的先后顺序和作用范围&拦截器preHandle(),postHandle(),afterComplation()方法执行顺序

在Spring框架中,过滤器(Filter)、拦截器(Interceptor)和面向切面编程(AOP)都是用于处理请求和处理流程的组件,但它们的作用范围和触发时机有所不同。下面我会解释这三者的先后顺序和作用范围。执行顺序:请注意,这个顺序可能因具体的配置和使用的技术而有所不同。在实际应用中,建议根据项目的具体需求来合理配置和使用这些组件。拦截器执行流程图:实现拦截器需要实现这个接口,这个 接口中有三个默认方法,这三个方法的执行顺序:我们实现接口然后重写这三个方法,就会在对应的时机被自动执行。这里就是调用处理

Zookeeper概要、协议、应用场景

Zoopkeeper提供了一套很好的分布式集群管理的机制,就是它这种基于层次型的目录树的数据结构并对树中的节点进行有效管理,从而可以设计出多种多样的分布式的数据管理模型,作为分布式系统的沟通调度桥梁。

spring.factories文件的作用

即spring.factories文件是帮助spring-boot项目包以外的bean(即在pom文件中添加依赖中的bean)注册到spring-boot项目的spring容器中。在Spring Boot启动时,它会扫描classpath下所有的spring.factories文件,加载其中的自动配置类,并将它们注入到Spring ApplicationContext中,使得项目能够自动运行。spring.factories文件是Spring Boot自动配置的核心文件之一,它的作用是。

Spring事务七大传播机制与五个隔离级别,嵌套事务

如果当前方法正有一个事务在运行中,则该方法应该运行在一个嵌套事务中,被嵌套的事务可以独立于被封装的事务中进行提交或者回滚。如果封装事务存在,并且外层事务抛出异常回滚,那么内层事务必须回滚,反之,内层事务并不影响外层事务。当前方法必须在一个具有事务的上下文中运行,如有客户端有事务在进行,那么被调用端将在该事务中运行,否则的话重新开启一个事务。当前方法必须运行在它自己的事务中。一个新的事务将启动,而且如果有一个现有的事务在运行的话,则这个方法将在运行期被挂起,直到新的事务提交或者回滚才恢复执行。

linux常用操作指令—— 查看磁盘、内存使用情况(df、du、free、top)

显示指定磁盘文件的可用空间。如果没有文件名被指定,则所有当前被挂载的文件系统的可用空间将被显示。默认情况下,磁盘空间将以 1KB为单位进行显示,除非环境变量 POSIXLY_CORRECT 被指定,那样将以512字节为单位进行显示。free指令会显示内存的使用情况,包括实体内存,虚拟的交换文件内存,共享内存区段,以及系统核心使用的缓冲区等。当文件系统也确定删除了该文件后,这时候du与df就一致了。实例4:显示目前磁盘空间和使用情况 (最常用)top:“实时查看” ,按。退出 (实时动态显示)

常见的七种加密算法及实现

**数字签名**、**信息加密** 是前后端开发都经常需要使用到的技术,应用场景包括了用户登入、交易、信息通讯、`oauth` 等等,不同的应用场景也会需要使用到不同的签名加密算法,或者需要搭配不一样的 **签名加密算法** 来达到业务目标。这里简单的给大家介绍几种常见的签名加密算法和一些典型场景下的应用。## 正文### 1. 数字签名**数字签名**,简单来说就是通过提供 **可鉴别** 的 **数字信息** 验证 **自身身份** 的一种方式。一套 **数字签名** 通常定义两种 **互补

7min到40s:SpringBoot 启动优化实践

然后重点排查这些阶段的代码。先看下。

SpringBoot系列教程之Bean之指定初始化顺序的若干姿势

之前介绍了@Order注解的常见错误理解,它并不能指定 bean 的加载顺序,那么问题来了,如果我需要指定 bean 的加载顺序,那应该怎么办呢?本文将介绍几种可行的方式来控制 bean 之间的加载顺序。

在Java中使用WebSocket

WebSocket是一种协议,用于在Web应用程序和服务器之间建立实时、双向的通信连接。它通过一个单一的TCP连接提供了持久化连接,这使得Web应用程序可以更加实时地传递数据。WebSocket协议最初由W3C开发,并于2011年成为标准。

3种方案,模拟两个线程抢票

在多线程编程中,资源竞争是一个常见的问题。资源竞争发生在多个线程试图同时访问或修改共享资源时,可能导致数据不一致或其他并发问题。在模拟两个线程抢票的场景中,我们需要考虑如何公平地分配票,并确保每个线程都有机会成功获取票。本篇文章将通过三种方式来模拟两个线程抢票的过程,以展示不同的并发控制策略。使用 Synchronized 来确保一次只有一个线程可以访问票资源。使用 ReentrantLock 来实现线程间的协调。使用 Semaphore 来限制同时访问票的线程数量。

替代Druid,HakariCP 为什么这么快?

这次源码探究,真的感觉看到了无数个小细节,无数个小优化,积少成多。平时开发过程中,一些小的细节也一定要“扣”。

Java中volatile 的使用场景有哪些?

volatile是一种轻量级的同步机制,它能保证共享变量的可见性,同时禁止重排序保证了操作的有序性,但是它无法保证原子性。所以使用volatilevolatile。

JDK22 正式发布了 !

Java 22 除了推出了新的增强功能和特性,也获得 Java Management Service (JMS) 的支持,这是一项新的 Oracle 云基础设施远程软件服务(Oracle Cloud Infrastructure, OCI) 原生服务,提供统一的控制台和仪表盘,帮助企业管理本地或云端的 Java 运行时和应用。使包含运行时计算值的字符串更容易表达,简化 Java 程序的开发工作,同时提高将用户提供的值编写成字符串,并将字符串传递给其他系统的程序的安全性。支持开发人员自由地表达构造器的行为。

Jackson 用起来!

你可以创建自定义序列化器和反序列化器以自定义特定字段或类的序列化和反序列化行为。为此,请创建一个实现或接口的类,并在需要自定义的字段或类上使用和注解。@Override// ...其他代码...优势性能优异:Jackson在序列化和反序列化过程中表现出优秀的性能,通常比其他Java JSON库更快。灵活性:通过注解、自定义序列化器/反序列化器等功能,Jackson提供了丰富的配置选项,允许你根据需求灵活地处理JSON数据。易于使用:Jackson的API设计简洁明了,易于学习和使用。

拜托!别再滥用 ! = null 判空了!!

另外,也许受此习惯影响,他们总潜意识地认为,所有的返回都是不可信任的,为了保护自己程序,就加了大量的判空。如果你养成习惯,都是这样写代码(返回空collections而不返回null),你调用自己写的方法时,就能大胆地忽略判空)这种情况下,null是个”看上去“合理的值,例如,我查询数据库,某个查询条件下,就是没有对应值,此时null算是表达了“空”的概念。最终,项目中会存在大量判空代码,多么丑陋繁冗!,而不要返回null,这样调用侧就能大胆地处理这个返回,例如调用侧拿到返回后,可以直接。

详解Java Math类的toDegrees()方法:将参数从弧度转换为角度

Java Math 类的 toDegrees() 方法是将一个角度的弧度表示转换为其度表示,返回值为double类型,表示从弧度数转换而来的角度数。这就是Java Math 类的 toDegrees() 方法的攻略。我们已经了解了该方法的基本概念、语法、注意事项以及两个示例。希望这篇攻略对你有所帮助。

SpringBoot接口防抖(防重复提交)的一些实现方案

作为一名老码农,在开发后端Java业务系统,包括各种管理后台和小程序等。在这些项目中,我设计过单/多租户体系系统,对接过许多开放平台,也搞过消息中心这类较为复杂的应用,但幸运的是,我至今还没有遇到过线上系统由于代码崩溃导致资损的情况。这其中的原因有三点:一是业务系统本身并不复杂;二是我一直遵循某大厂代码规约,在开发过程中尽可能按规约编写代码;三是经过多年的开发经验积累,我成为了一名熟练工,掌握了一些实用的技巧。啥是防抖所谓防抖,一是防用户手抖,二是防网络抖动。

公司新来一个同事:为什么 HashMap 不能一边遍历一边删除?一下子把我问懵了!

前段时间,同事在代码中KW扫描的时候出现这样一条:上面出现这样的原因是在使用foreach对HashMap进行遍历时,同时进行put赋值操作会有问题,异常ConcurrentModificationException。于是帮同简单的看了一下,印象中集合类在进行遍历时同时进行删除或者添加操作时需要谨慎,一般使用迭代器进行操作。于是告诉同事,应该使用迭代器Iterator来对集合元素进行操作。同事问我为什么?这一下子把我问蒙了?对啊,只是记得这样用不可以,但是好像自己从来没有细究过为什么?

每天一个摆脱if-else工程师的技巧——优雅的参数校验

在日常的开发工作中,为了程序的健壮性,大部分方法都需要进行入参数据校验。最直接的当然是在相应方法内对数据进行手动校验,但是这样代码里就会有很多冗余繁琐的if-else。throw new IllegalArgumentException("用户姓名不能为空");throw new IllegalArgumentException("性别不能为空");throw new IllegalArgumentException("性别错误");

SpringBoot请求转发与重定向

但是可能由于B网址相对于A网址过于复杂,这样搜索引擎就会觉得网址A对用户更加友好,因而在重定向之后任然显示旧的网址A,但是显示网址B的内容。在平常使用手机的过程当中,有时候会发现网页上会有浮动的窗口,或者访问的页面不是正常的页面,这就可能是运营商通过某种方式篡改了用户正常访问的页面。重定向,是指在Nginx中,重定向是指通过修改URL地址,将客户端的请求重定向到另一个URL地址的过程,Nginx中实现重定向的方式有多种,比如使用rewrite模块、return指令等。使用场景:在返回视图的前面加上。

SSO 单点登录和 OAuth2.0 有何区别?

此方法的缺点是它依赖于浏览器和会话状态,对于分布式或者微服务系统而言,可能需要在服务端做会话共享,但是服务端会话共享效率比较低,这不是一个好的方案。在单点登录的上下文中,OAuth 可以用作一个中介,用户在一个“授权服务器”上登录,并获得一个访问令牌,该令牌可以用于访问其他“资源服务器”上的资源。首先,SSO 主要关注用户在多个应用程序和服务之间的无缝切换和保持登录状态的问题。这种方法通过将登录认证和业务系统分离,使用独立的登录中心,实现了在登录中心登录后,所有相关的业务系统都能免登录访问资源。