2019独角兽企业重金招聘Python工程师标准>>>
引语:
本篇博客主要介绍了Spark SQL中的filter过滤数据、去重、集合等基本操作,以及一些常用日期函数,随机函数,字符串操作等函数的使用,并列编写了示例代码,同时还给出了代码当中用到的一些数据,放在最文章最后。
SparkSQL简介
Spark SQL是Spark生态系统中非常重要的组件,其前身为Shark。Shark是Spark上的数据仓库,最初设计成与Hive兼容,但是该项目于2014年开始停止开发,转向Spark SQL。Spark SQL全面继承了Shark,并进行了优化。 Spark SQL增加了SchemaRDD(即带有Schema信息的RDD),使用户可以在Spark SQL中执行SQL语句,数据既可以来自RDD,也可以来自Hive、HDFS、Cassandra等外部数据源,还可以是JSON格式的数据。Spark SQL目前支持Scala、Java、Python三种语言,支持SQL-92规范。
Spark SQL的优点
Spark SQL可以很好地支持SQL查询,一方面,可以编写Spark应用程序使用SQL语句进行数据查询,另一方面,也可以使用标准的数据库连接器(比如JDBC或ODBC)连接Spark进行SQL查询 。
Spark SQL基本操作
去重
distinct:根据每条数据进行完整去重。
dropDuplicates:根据字段去重。
package spark2x import org.apache.spark.sql.{DataFrame, Dataset, SparkSession} /*** 类名 DistinctDemo* 作者 彭三青* 创建时间 2018-11-29 15:02* 版本 1.0* 描述: $ 去重操作:distinct、drop*/ object DistinctDemo {def main(args: Array[String]): Unit = {val spark = SparkSession.builder().master("local[2]").appName("Operations").getOrCreate()import spark.implicits._ val employeeDF: DataFrame = spark.read.json("E://temp/person.json")val employeeDS: Dataset[Employee] = employeeDF.as[Employee] println("--------------------distinct---------------------")// 根据每条数据进行完整的去重employeeDS.distinct().show() println("--------------------dropDuplicates---------------------")// 根据字段进行去重employeeDS.dropDuplicates(Seq("name")).show()} } case class Employee(name: String, age: Long, depId: Long, gender: String, salary: Double)
过滤
filter():括号里的参数可以是过滤函数、函数返回的Boolean值(为true则保留,false则过滤掉)、列名或者表达式。
except:过滤出当前DataSet中有,但在另一个DataSet中不存在的。
intersect:获取两个DataSet的交集。
提示:except和intersect使用的时候必须要是相同的实例,如果把另外一个的Employee换成一个同样的字段的Person类就会报错。
package spark2x import org.apache.spark.sql.{DataFrame, Dataset, SparkSession} /*** 类名 FilterDemo* 作者 彭三青* 创建时间 2018-11-29 15:09* 版本 1.0* 描述: $*/ object FilterDemo {def main(args: Array[String]): Unit = {val spark = SparkSession.builder().master("local[2]").appName("FilterDemo").getOrCreate()import spark.implicits._ val employeeDF: DataFrame = spark.read.json("E://temp/employee.json")val employeeDS: Dataset[Employee] = employeeDF.as[Employee]val employee2DF: DataFrame = spark.read.json("E://temp/employee2.json")val employee2DS: Dataset[Employee] = employee2DF.as[Employee] println("--------------------employee--------------------")employeeDS.show() println("--------------------employee2--------------------")employee2DS.show() println(" ┏┓ ┏┓\n" +" ┏┛┻━━━┛┻┓\n" +" ┃ ┃\n" +" ┃ ━ ┃\n" +" ┃ ┳┛ ┗┳ ┃\n" +" ┃ ┃\n" +" ┃ ┻ ┃\n" +" ┃ ┃\n" +" ┗━┓ ┏━┛\n" +" ┃ ┃\n" +" ┃ ┃\n" +" ┃ ┗━━━┓\n" +" ┃ ┣┓\n" +" ┃ ┏┛\n" +" ┗┓┓┏━┳┓┏┛\n" +" ┃┫┫ ┃┫┫\n" +" ┗┻┛ ┗┻┛\n") println("-------------------------------------------------") // 如果参数返回true,就保留该元素,否则就过滤掉employeeDS.filter(employee => employee.age == 35).show()employeeDS.filter(employee => employee.age > 30).show()// 获取当前的DataSet中有,但是在另外一个DataSet中没有的元素employeeDS.except(employee2DS).show()// 获取两个DataSet的交集employeeDS.intersect(employee2DS).show() spark.stop()} } case class Employee(name: String, age: Long, depId: Long, gender: String, salary: Double)
集合
collect_set:将一个分组内指定字段的值都收集到一起,不去重
collect_list:讲一个分组内指定字段的值都收集到一起,会去重
package spark2x import org.apache.spark.sql.{DataFrame, Dataset, SparkSession} /*** 类名 CollectSetAndList* 作者 彭三青* 创建时间 2018-11-29 15:24* 版本 1.0* 描述: $ collect_list、 collect_set*/ object CollectSetAndList {def main(args: Array[String]): Unit = {val spark = SparkSession.builder().master("local[2]").appName("FilterDemo").getOrCreate()import spark.implicits._import org.apache.spark.sql.functions._ val employeeDF: DataFrame = spark.read.json("E://temp/employee.json")val employeeDS: Dataset[Employee] = employeeDF.as[Employee] // collect_list:将一个分组内指定字段的值都收集到一起,不去重// collect_set:同上,但唯一区别是会去重employeeDS.groupBy(employeeDS("depId")).agg(collect_set(employeeDS("name")), collect_list(employeeDS("name"))).show()} } case class Employee(name: String, age: Long, depId: Long, gender: String, salary: Double)
joinWith和sort
package spark2x import org.apache.spark.sql.{DataFrame, Dataset, SparkSession} /*** 类名 JoinAndSort* 作者 彭三青* 创建时间 2018-11-29 15:19* 版本 1.0* 描述: $*/ object JoinAndSort {def main(args: Array[String]): Unit = {val spark = SparkSession.builder().master("local[2]").appName("FilterDemo").getOrCreate()import spark.implicits._ val employeeDF: DataFrame = spark.read.json("E://temp/employee.json")val employeeDS: Dataset[Employee] = employeeDF.as[Employee]val departmentDF: DataFrame = spark.read.json("E://temp/department.json")val departmentDS: Dataset[Department] = departmentDF.as[Department] println("----------------------employeeDS----------------------")employeeDS.show()println("----------------------departmentDS----------------------")departmentDS.show()println("------------------------------------------------------------") // 等值连接employeeDS.joinWith(departmentDS, $"depId" === $"id").show()// 按照年龄进行排序,并降序排列employeeDS.sort($"age".desc).show()} } case class Department(id: Long, name: String) case class Employee(name: String, age: Long, depId: Long, gender: String, salary: Double)
函数的使用
日期函数:
current_time():获取当前日期。
current_timestamp():获取当前时间戳。
数学函数
rand():生成0~1之间的随机数
round(e: column,scale: Int ):column列名,scala精确到小数点的位数。
round(e: column):一个参数默认精确到小数点1位。
字符串函数
concat_ws(seq: String, exprs: column*):字符串拼接。参数seq传入的拼接的字符,column传入的需要拼接的字符,可以指定多个列,不同列之间用逗号隔开。
package spark2x import org.apache.spark.sql.{DataFrame, Dataset, SparkSession} /*** 类名 FunctionsDemo* 作者 彭三青* 创建时间 2018-11-29 15:56* 版本 1.0* 描述: $*/ object FunctionsDemo {def main(args: Array[String]): Unit = {val spark = SparkSession.builder().master("local[2]").appName("Operations").getOrCreate()import spark.implicits._import org.apache.spark.sql.functions._ val employeeDF: DataFrame = spark.read.json("E://temp/employee.json")val employeeDS: Dataset[Employee] = employeeDF.as[Employee] employeeDS.select(employeeDS("name"), current_date(), current_timestamp(),rand(), round(employeeDS("salary"), 2),// 取随机数,concat(employeeDS("gender"), employeeDS("age")),concat_ws("|", employeeDS("gender"), employeeDS("age"))).show() spark.stop()} } case class Employee(name: String, age: Long, depId: Long, gender: String, salary: Double)
数据
employee.json
{"name": "Leo", "age": 25, "depId": 1, "gender": "male", "salary": 20000.123} {"name": "Marry", "age": 30, "depId": 2, "gender": "female", "salary": 25000} {"name": "Jack", "age": 35, "depId": 1, "gender": "male", "salary": 15000} {"name": "Tom", "age": 42, "depId": 3, "gender": "male", "salary": 18000} {"name": "Kattie", "age": 21, "depId": 3, "gender": "female", "salary": 21000} {"name": "Jen", "age": 30, "depId": 2, "gender": "female", "salary": 28000} {"name": "Jen", "age": 19, "depId": 2, "gender": "male", "salary": 8000} {"name": "Tom", "age": 42, "depId": 3, "gender": "male", "salary": 18000} {"name": "XiaoFang", "age": 18, "depId": 3, "gender": "female", "salary": 58000}
employee2.json
{"name": "Leo", "age": 25, "depId": 1, "gender": "male", "salary": 20000.123} {"name": "Marry", "age": 30, "depId": 2, "gender": "female", "salary": 25000} {"name": "Jack", "age": 35, "depId": 1, "gender": "male", "salary": 15000} {"name": "Tom", "age": 42, "depId": 3, "gender": "male", "salary": 18000} {"name": "Kattie", "age": 21, "depId": 3, "gender": "female", "salary": 21000} {"name": "Jen", "age": 30, "depId": 2, "gender": "female", "salary": 28000}
department.json
{"id": 1, "name": "Technical Department"} {"id": 2, "name": "Financial Department"} {"id": 3, "name": "HR Department"}