当前位置: 首页 > 编程日记 > 正文

十个利用矩阵乘法解决的经典题目

出自matrix67.com

好像目前还没有这方面题目的总结。这几天连续看到四个问这类题目的人,今天在这里简单写一下。这里我们不介绍其它有关矩阵的知识,只介绍矩阵乘法和相关性质。
    不要以为数学中的矩阵也是黑色屏幕上不断变化的绿色字符。在数学中,一个矩阵说穿了就是一个二维数组。一个n行m列的矩阵可以乘以一个m行p列的矩阵,得到的结果是一个n行p列的矩阵,其中的第i行第j列位置上的数等于前一个矩阵第i行上的m个数与后一个矩阵第j列上的m个数对应相乘后所有m个乘积的和。比如,下面的算式表示一个2行2列的矩阵乘以2行3列的矩阵,其结果是一个2行3列的矩阵。其中,结果的那个4等于2*2+0*1:
    
    下面的算式则是一个1 x 3的矩阵乘以3 x 2的矩阵,得到一个1 x 2的矩阵:
    

    矩阵乘法的两个重要性质:一,矩阵乘法不满足交换律;二,矩阵乘法满足结合律。为什么矩阵乘法不满足交换律呢?废话,交换过来后两个矩阵有可能根本不能相乘。为什么它又满足结合律呢?仔细想想你会发现这也是废话。假设你有三个矩阵A、B、C,那么(AB)C和A(BC)的结果的第i行第j列上的数都等于所有A(ik)*B(kl)*C(lj)的和(枚举所有的k和l)。

经典题目1 给定n个点,m个操作,构造O(m+n)的算法输出m个操作后各点的位置。操作有平移、缩放、翻转和旋转
    这里的操作是对所有点同时进行的。其中翻转是以坐标轴为对称轴进行翻转(两种情况),旋转则以原点为中心。如果对每个点分别进行模拟,那么m个操作总共耗时O(mn)。利用矩阵乘法可以在O(m)的时间里把所有操作合并为一个矩阵,然后每个点与该矩阵相乘即可直接得出最终该点的位置,总共耗时O(m+n)。假设初始时某个点的坐标为x和y,下面5个矩阵可以分别对其进行平移、旋转、翻转和旋转操作。预先把所有m个操作所对应的矩阵全部乘起来,再乘以(x,y,1),即可一步得出最终点的位置。
    

经典题目2 给定矩阵A,请快速计算出A^n(n个A相乘)的结果,输出的每个数都mod p。
    由于矩阵乘法具有结合律,因此A^4 = A * A * A * A = (A*A) * (A*A) = A^2 * A^2。我们可以得到这样的结论:当n为偶数时,A^n = A^(n/2) * A^(n/2);当n为奇数时,A^n = A^(n/2) * A^(n/2) * A (其中n/2取整)。这就告诉我们,计算A^n也可以使用二分快速求幂的方法。例如,为了算出A^25的值,我们只需要递归地计算出A^12、A^6、A^3的值即可。根据这里的一些结果,我们可以在计算过程中不断取模,避免高精度运算。

经典题目3 POJ3233 (感谢rmq)
    题目大意:给定矩阵A,求A + A^2 + A^3 + ... + A^k的结果(两个矩阵相加就是对应位置分别相加)。输出的数据mod m。k<=10^9。
    这道题两次二分,相当经典。首先我们知道,A^i可以二分求出。然后我们需要对整个题目的数据规模k进行二分。比如,当k=6时,有:
    A + A^2 + A^3 + A^4 + A^5 + A^6 =(A + A^2 + A^3) + A^3*(A + A^2 + A^3)
    应用这个式子后,规模k减小了一半。我们二分求出A^3后再递归地计算A + A^2 + A^3,即可得到原问题的答案。

经典题目4 VOJ1049
    题目大意:顺次给出m个置换,反复使用这m个置换对初始序列进行操作,问k次置换后的序列。m<=10, k<2^31。
    首先将这m个置换“合并”起来(算出这m个置换的乘积),然后接下来我们需要执行这个置换k/m次(取整,若有余数则剩下几步模拟即可)。注意任意一个置换都可以表示成矩阵的形式。例如,将1 2 3 4置换为3 1 2 4,相当于下面的矩阵乘法:
    
    置换k/m次就相当于在前面乘以k/m个这样的矩阵。我们可以二分计算出该矩阵的k/m次方,再乘以初始序列即可。做出来了别忙着高兴,得意之时就是你灭亡之日,别忘了最后可能还有几个置换需要模拟。

经典题目5 《算法艺术与信息学竞赛》207页(2.1代数方法和模型,[例题5]细菌,版次不同可能页码有偏差)
    大家自己去看看吧,书上讲得很详细。解题方法和上一题类似,都是用矩阵来表示操作,然后二分求最终状态。

经典题目6 给定n和p,求第n个Fibonacci数mod p的值,n不超过2^31
    根据前面的一些思路,现在我们需要构造一个2 x 2的矩阵,使得它乘以(a,b)得到的结果是(b,a+b)。每多乘一次这个矩阵,这两个数就会多迭代一次。那么,我们把这个2 x 2的矩阵自乘n次,再乘以(0,1)就可以得到第n个Fibonacci数了。不用多想,这个2 x 2的矩阵很容易构造出来:
    

经典题目7 VOJ1067
    我们可以用上面的方法二分求出任何一个线性递推式的第n项,其对应矩阵的构造方法为:在右上角的(n-1)*(n-1)的小矩阵中的主对角线上填1,矩阵第n行填对应的系数,其它地方都填0。例如,我们可以用下面的矩阵乘法来二分计算f(n) = 4f(n-1) - 3f(n-2) + 2f(n-4)的第k项:
    
    利用矩阵乘法求解线性递推关系的题目我能编出一卡车来。这里给出的例题是系数全为1的情况。

经典题目8 给定一个有向图,问从A点恰好走k步(允许重复经过边)到达B点的方案数mod p的值
    把给定的图转为邻接矩阵,即A(i,j)=1当且仅当存在一条边i->j。令C=A*A,那么C(i,j)=ΣA(i,k)*A(k,j),实际上就等于从点i到点j恰好经过2条边的路径数(枚举k为中转点)。类似地,C*A的第i行第j列就表示从i到j经过3条边的路径数。同理,如果要求经过k步的路径数,我们只需要二分求出A^k即可。

经典题目9 用1 x 2的多米诺骨牌填满M x N的矩形有多少种方案,M<=5,N<2^31,输出答案mod p的结果
    
    我们以M=3为例进行讲解。假设我们把这个矩形横着放在电脑屏幕上,从右往左一列一列地进行填充。其中前n-2列已经填满了,第n-1列参差不齐。现在我们要做的事情是把第n-1列也填满,将状态转移到第n列上去。由于第n-1列的状态不一样(有8种不同的状态),因此我们需要分情况进行讨论。在图中,我把转移前8种不同的状态放在左边,转移后8种不同的状态放在右边,左边的某种状态可以转移到右边的某种状态就在它们之间连一根线。注意为了保证方案不重复,状态转移时我们不允许在第n-1列竖着放一个多米诺骨牌(例如左边第2种状态不能转移到右边第4种状态),否则这将与另一种转移前的状态重复。把这8种状态的转移关系画成一个有向图,那么问题就变成了这样:从状态111出发,恰好经过n步回到这个状态有多少种方案。比如,n=2时有3种方案,111->011->111、111->110->111和111->000->111,这与用多米诺骨牌覆盖3x2矩形的方案一一对应。这样这个题目就转化为了我们前面的例题8。
    后面我写了一份此题的源代码。你可以再次看到位运算的相关应用。

经典题目10 POJ2778
    题目大意是,检测所有可能的n位DNA串有多少个DNA串中不含有指定的病毒片段。合法的DNA只能由ACTG四个字符构成。题目将给出10个以内的病毒片段,每个片段长度不超过10。数据规模n<=2 000 000 000。
    下面的讲解中我们以ATC,AAA,GGC,CT这四个病毒片段为例,说明怎样像上面的题一样通过构图将问题转化为例题8。我们找出所有病毒片段的前缀,把n位DNA分为以下7类:以AT结尾、以AA结尾、以GG结尾、以?A结尾、以?G结尾、以?C结尾和以??结尾。其中问号表示“其它情况”,它可以是任一字母,只要这个字母不会让它所在的串成为某个病毒的前缀。显然,这些分类是全集的一个划分(交集为空,并集为全集)。现在,假如我们已经知道了长度为n-1的各类DNA中符合要求的DNA个数,我们需要求出长度为n时各类DNA的个数。我们可以根据各类型间的转移构造一个边上带权的有向图。例如,从AT不能转移到AA,从AT转移到??有4种方法(后面加任一字母),从?A转移到AA有1种方案(后面加个A),从?A转移到??有2种方案(后面加G或C),从GG到??有2种方案(后面加C将构成病毒片段,不合法,只能加A和T)等等。这个图的构造过程类似于用有限状态自动机做串匹配。然后,我们就把这个图转化成矩阵,让这个矩阵自乘n次即可。最后输出的是从??状态到所有其它状态的路径数总和。
    题目中的数据规模保证前缀数不超过100,一次矩阵乘法是三方的,一共要乘log(n)次。因此这题总的复杂度是100^3 * log(n),AC了。

    最后给出第9题的代码供大家参考(今天写的,熟悉了一下C++的类和运算符重载)。为了避免大家看代码看着看着就忘了,我把这句话放在前面来说:
    Matrix67原创,转贴请注明出处。

#include <cstdio>
#define SIZE (1<<m)
#define MAX_SIZE 32
using namespace std;

class CMatrix
{
    public:
        long element[MAX_SIZE][MAX_SIZE];
        void setSize(int);
        void setModulo(int);
        CMatrix operator* (CMatrix);
        CMatrix power(int);
    private:
        int size;
        long modulo;
};

void CMatrix::setSize(int a)
{
    for (int i=0; i<a; i++)
        for (int j=0; j<a; j++)
            element[i][j]=0;
    size = a;
}

void CMatrix::setModulo(int a)
{
    modulo = a;
}

CMatrix CMatrix::operator* (CMatrix param)
{
    CMatrix product;
    product.setSize(size);
    product.setModulo(modulo);
    for (int i=0; i<size; i++)
        for (int j=0; j<size; j++)
            for (int k=0; k<size; k++)
            {
                product.element[i][j]+=element[i][k]*param.element[k][j];
                product.element[i][j]%=modulo;
            }

    return product;
}

CMatrix CMatrix::power(int exp)
{
    CMatrix tmp = (*this) * (*this);
    if (exp==1) return *this;
    else if (exp & 1) return tmp.power(exp/2) * (*this);
    else return tmp.power(exp/2);
}


int main()
{
    const int validSet[]={0,3,6,12,15,24,27,30};
    long n, m, p;
    CMatrix unit;
    
    scanf("%d%d%d", &n, &m, &p);
    unit.setSize(SIZE);
    for(int i=0; i<SIZE; i++)
        for(int j=0; j<SIZE; j++)
            if( ((~i)&j) == ((~i)&(SIZE-1)) )
            {
                bool isValid=false;
                for (int k=0; k<8; k++)isValid=isValid||(i&j)==validSet[k];
                unit.element[i][j]=isValid;
            }

    unit.setModulo(p);
    printf("%d", unit.power(n).element[SIZE-1][SIZE-1] );
    return 0;
}

转载于:https://www.cnblogs.com/ushiojamie/archive/2011/10/12/2209053.html

相关文章:

maven生命周期理解

你可以仅仅调用clean来清理工作目录&#xff0c;仅仅调用site来生成站点。当然你也可以直接运行 mvn clean install site 运行所有这三套生命周期。 知道了每套生命周期的大概用途和相互关系以后&#xff0c;来逐个详细看一下每套生命周期&#xff0c;Clean和Site相对比较简单&…

安装envi出现cannot find lincese_Ubuntu 16.04 安装 CUDA10.1 (解决循环登陆的问题)

0. 前言直接用 cuda安装文件同时安装 NVIDIA 驱动和 CUDA&#xff0c;没有单独安装更高版本的 NVIDIA 驱动&#xff1b;为避免浪费显存&#xff0c;图形化界面显示是在Intel 集显环境下&#xff0c;NVIDIA 独显做计算&#xff1b;循环登陆问题是因为安装时没有加 --no-opengl-l…

POJ1067_取石子游戏_威佐夫博弈

/* *State: 1067 Accepted 176K 16MS C 435B *题目大意&#xff1a; * 威佐夫博弈 *解题思路&#xff1a; * 略。 */ #include <iostream> #include <stdio.h> #include <cmath> using namespace std;int main(void) {int big,…

cuda cudnn pytorch版本对应关系

1. cuda和cudnn版本对应关系 https://developer.nvidia.com/rdp/cudnn-archive#a-collapse742-10 转载于:https://www.cnblogs.com/yeran/p/11345990.html

【转载】WinCE OAL架构分析

转载自&#xff1a;http://blog.csdn.net/nanjianhui/article/details/3830452 我个人认为OAL应该是WinCE BSP中最为重要的一个模块了&#xff0c;简单回顾一下&#xff0c;WinCE BSP由Bootloader&#xff0c;Drivers&#xff0c;OAL和配置文件组成。Bootloader一般指EBOOT&…

centos7 中搭建gitlab

1、在virtual box中新建一个虚拟机 2、gitlab ce&#xff08;community版本&#xff09;地址&#xff1a;https://about.gitlab.com/installation/#centos-7?versionce 如果在执行如下安装命令提示无法连接&#xff0c; sudo EXTERNAL_URL"http://gitlab.example.com&quo…

androidstudio jni开发_初识NDK开发(一)

“ 前言&#xff1a;初学逆向 请多多指教 昨天在看雪论坛发了篇文章&#xff0c;被标记了优秀&#xff0c;不由得感叹 这一个月没有白学&#xff01; 剩下还有11个月 冲了”学习到的内容—1、了解了什么是NDK&#xff0c;以及在android studio中的环境搭建中注意的事项2、pthre…

http编程学习(C#)

《HTTP Programming Recipes for C# Bots》 第一章 选择GET还是POST取决于传送到服务器的数据的多少。GET传送的数据少&#xff0c;POST几乎对传送的数据无限制。 It is important to note that only one physical file is transferred per HTTP request. 每次HTTP请求只传送了…

服务器远程免密登录

1. 生成本地密钥 ssh-keygen2. 将密钥上传到服务器 ssh-copy-id -p port username192.128.128.128 3. 创建登录脚本 ssh -p port username192.128.128.128 转载于:https://www.cnblogs.com/yeran/p/11348045.html

如何触发AspxGridview的PageIndexChanged 客户端事件

&#xff1f;最近在使用AspxGridview控件时&#xff0c;遇到一个问题&#xff0c;就是在触发AspxGridview分页事件之后&#xff0c;需要在执行js事件&#xff0c;找了好久&#xff0c;在官网上找到处理的办法。 就是在cs页面设置变量在触发PageIndexChanged事件后&#xff0c;改…

Mysql 多表使用 Case when then 遇到的坑

前言&#xff1a; 在做一个订单导出时&#xff0c;遇到多表都含有state这个字段&#xff0c;含有多个状态首先想到的是&#xff1a; case colume when condition then result when condition then result when condition then result else result end 当正常试着写代码时会发现…

nginx反向代理原理及配置详解

nginx概述nginx是一款自由的、开源的、高性能的HTTP服务器和反向代理服务器&#xff1b;同时也是一个IMAP、POP3、SMTP代理服务器&#xff1b;nginx可以作为一个HTTP服务器进行网站的发布处理&#xff0c;另外nginx可以作为反向代理进行负载均衡的实现。 这里主要通过三个方面简…

小鱼易连电脑版_生活多么美好 篇十六:我的桌面改造,有绿植,有小鱼,有大音箱...

原标题&#xff1a;生活多么美好 篇十六&#xff1a;我的桌面改造&#xff0c;有绿植&#xff0c;有小鱼&#xff0c;有大音箱生活多么美好 篇十六&#xff1a;我的桌面改造&#xff0c;有绿植&#xff0c;有小鱼&#xff0c;有大音箱 2020-11-06 22:13:312点赞1收藏1评论想攒一…

菜鸟初涉SQL Server的总结

看完了一遍耿建玲老师的视频&#xff0c;讲的很多&#xff0c;一些细节的东西还是很难去把控。准备总结自己觉得无从下手&#xff0c;觉得很难去把控这个宏观和细节的平衡。但如果不去做这个工作的话&#xff0c;我可能永远都不能学会怎样去做好总结。总之&#xff0c;先这样去…

extjs4.0视频教程下载

发现www.uspcat.com 学习extjs4.0不错的论坛啊 http://www.uspcat.com/portal.php 视频教程下载 http://www.uspcat.com/forum.php?modviewthread&tid197&extra 转载于:https://blog.51cto.com/3450037/687004

开源依旧:再次分享一个进销存系统

开篇 我之前发过一篇博文《两天完成一个小型工程报价系统(三层架构)》&#xff0c;不少朋友向我要源码学习&#xff0c;后来久而久之忘记回复了。今天我再分享一个进销存系统&#xff0c;只为学习&#xff0c;没有复杂的框架和设计模式&#xff0c;有的是我个人的理解&#xff…

kotlin + springboot启用elasticsearch搜索

参考自&#xff1a; http://how2j.cn/k/search-engine/search-engine-springboot/1791.html?p78908 工具版本&#xff1a; elasticsearch 6.2.2、 kibana 6.2.2&#xff0c; 下载地址&#xff1a; elasticsearch、kibana 下载demo 1、kotlin版springboot项目创建 访问https:/…

insert 语句的选择列表包含的项多于插入列表中的项_如何定义和使用Python列表(Lists)

Python中最简单的数据集合是一个列表(list)。列表是方括号内用逗号分隔的任何数据项列表。通常&#xff0c;就像使用变量一样&#xff0c;使用符号为Python列表分配名称。 如果列表中包含数字&#xff0c;则不要在其周围使用引号。 例如&#xff0c;这是测试成绩的列表&#xf…

数据结构之主席树

这里讲静态的主席树&#xff0c;关于静态区间第k小。&#xff08;有兴趣的朋友还可以去看看我写的整体二分&#xff0c;代码实现略优于主席树我觉得&#xff0c;当然静态主席树是很好写的&#xff09; 题目描述&#xff1a; 题目描述 如题&#xff0c;给定N个正整数构成的序列&…

k-d tree算法的研究

By RaySaint 2011/10/12 动机 先前写了一篇文章《SIFT算法研究》讲了讲SIFT特征具体是如何检测和描述的&#xff0c;其中也提到了SIFT常见的一个用途就是物体识别&#xff0c;物体识别的过程如下图所示&#xff1a; 如上图(a)&#xff0c;我们先对待识别的物体的图像进行SIFT特…

Unicode,UTF-32,UTF-16,UTF-8到底是啥关系?

编码的目的&#xff0c;就是给抽象的字符赋予一个数值&#xff0c;好在计算机里面表示。常见的ASCII使用8bit给字符编码&#xff0c;但是实际只使用了7bit&#xff0c;最高位没有使用&#xff0c;因此&#xff0c;只能表示128个字符&#xff1b;ISO-8859-1(也叫Latin-1&#xf…

HDU 4407 sum 容斥原理

算法: 利用数据1...N的性质&#xff0c;求与P的互质的个数&#xff0c;位运算&#xff0c;容斥定理。。 #include<stdio.h> #include<stdlib.h> #include<string.h> #include<iostream> #include<vector> #include<string> #include<ma…

uniapp中qrcode生成二维码后传的参数不见了_阿虚教你制作动态二维码,超详细教程!

这篇教程很早之前就答应几个粉丝要写&#xff0c;拖的有点久了。内容比较多&#xff0c;先上个目录阿虚的教程会迟到&#xff0c;但永远不会缺席。hahahahhaha...一、 先说一下今天要教的内容ʕ•̫͡•ོʔ•̫͡•ཻʕ•̫͡•ʔ•͓͡•ʔ 1.不准备教的类似这种二维码&#…

得到最后的自增长列的最后一个值

declare Table_name varchar(60) set Table_name aa; Select so.name Table_name, --表名字 sc.name Iden_Column_name, --自增字段名字 ident_current(so.name) curr_value, --自增字段当前值 ident_incr(so.name) incr_value, --自增字段增长值 ident_seed(so.name) s…

关于C语言中 字符串常量的问题

昨天晚上我编写了一段简短的C语言程序&#xff08;Linux环境下&#xff09;&#xff0c;编译能够通过&#xff0c;但是运行的时候老是报段错误。我当时非常郁闷&#xff0c;因为代码不长。其中主函数中有这样一句话&#xff1a; char *str"epmzm bpmzm qa eqtt bpmzm qa i…

WPF布局(2) 使用的DockPanel面板进行简单的布局

DockPanel 面板是根据外边缘进行控件的拉伸&#xff0c;DockPanel的LastChildFill属性设置为True 时&#xff0c;最后一个添加的控件将占满剩余空间。 <DockPanel LastChildFill"True"><Button DockPanel.Dock"Top">Top Button</Button>…

合并两个有序数组(重新开始)

在看分治算法的时候&#xff0c;想先自己写写合并的代码&#xff0c;还是不熟练啊&#xff01; 为了保持对代码的敏感度&#xff0c;要保持练习。加油&#xff01; public class JustDoIt0803 {/*** 分治算法学习前准备*/public static void main(String[] args) {int[] x new…

miui通知栏要点两下_MIUI免费主题分享,半透明通知栏很好看,另附壁纸!

最近很少分享主题&#xff0c;主要原因是没发现太好的&#xff0c;甚至主题连一处漂亮的点都没有&#xff0c;不过还是有一款状态栏很精致的主题&#xff0c;这里分享大家&#xff0c;可用作混搭使用&#xff01;主题名&#xff1a;Blur首先主题是免费的&#xff0c;也之所以免…

C#中的委托和事件(续)

引言 如果你看过了 C#中的委托和事件 一文&#xff0c;我想你对委托和事件已经有了一个基本的认识。但那些远不是委托和事件的全部内容&#xff0c;还有很多的地方没有涉及。本文将讨论委托和事件一些更为细节的问题&#xff0c;包括一些大家常问到的问题&#xff0c;以及事件访…

优先级队列实现哈夫曼树的编码和译码

//优先级队列实现的哈夫曼树的编码和译码 #include<iostream> #include<queue> #include<string> using namespace std; class Node { public: float weight; Node* left; Node* right; char ch; Node(float…