内存地址转换与分段
原文标题:Memory Translation and Segmentation
原文地址:http://duartes.org/gustavo/blog/
翻译地址:http://blog.csdn.net/drshenlei/article/details/4261909
本文是Intel兼容计算机(x86)的内存与保护系列文章的第一篇,延续了启动引导系列文章的主题,进一步分析操作系统内核的工作流程。与以前一样,我将引用Linux内核的源代码,但对Windows只给出示例(抱歉,我忽略了BSD,Mac等系统,但大部分的讨论对它们一样适用)。文中如果有错误,请不吝赐教。
在支持Intel的主板芯片组上,CPU对内存的访问是通过连接着CPU和北桥芯片的前端总线来完成的。在前端总线上传输的内存地址都是物理内存地址,编号从0开始一直到可用物理内存的最高端。这些数字被北桥映射到实际的内存条上。物理地址是明确的、最终用在总线上的编号,不必转换,不必分页,也没有特权级检查。然而,在CPU内部,程序所使用的是逻辑内存地址,它必须被转换成物理地址后,才能用于实际内存访问。从概念上讲,地址转换的过程如下图所示:
x86 CPU开启分页功能后的内存地址转换过程
此图并未指出详实的转换方式,它仅仅描述了在CPU的分页功能开启的情况下内存地址的转换过程。如果CPU关闭了分页功能,或运行于16位实模式,那么从分段单元(segmentation unit)输出的就是最终的物理地址了。当CPU要执行一条引用了内存地址的指令时,转换过程就开始了。第一步是把逻辑地址转换成线性地址。但是,为什么不跳过这一步,而让软件直接使用线性地址(或物理地址呢?)其理由与:“人类为何要长有阑尾?它的主要作用仅仅是被感染发炎而已”大致相同。这是进化过程中产生的奇特构造。要真正理解x86分段功能的设计,我们就必须回溯到1978年。
最初的8086处理器的寄存器是16位的,其指令集大多使用8位或16位的操作数。这使得代码可以控制216个字节(或64KB)的内存。然而Intel的工程师们想要让CPU可以使用更多的内存,而又不用扩展寄存器和指令的位宽。于是他们引入了段寄存器(segment register),用来告诉CPU一条程序指令将操作哪一个64K的内存区块。一个合理的解决方案是:你先加载段寄存器,相当于说“这儿!我打算操作开始于X处的内存区块”;之后,再用16位的内存地址来表示相对于那个内存区块(或段)的偏移量。总共有4个段寄存器:一个用于栈(ss),一个用于程序代码(cs),两个用于数据(ds,es)。在那个年代,大部分程序的栈、代码、数据都可以塞进对应的段中,每段64KB长,所以分段功能经常是透明的。
现今,分段功能依然存在,一直被x86处理器所使用着。每一条会访问内存的指令都隐式的使用了段寄存器。比如,一条跳转指令会用到代码段寄存器(cs),一条压栈指令(stack push instruction)会使用到堆栈段寄存器(ss)。在大部分情况下你可以使用指令明确的改写段寄存器的值。段寄存器存储了一个16位的段选择符(segment selector);它们可以经由机器指令(比如MOV)被直接加载。唯一的例外是代码段寄存器(cs),它只能被影响程序执行顺序的指令所改变,比如CALL或JMP指令。虽然分段功能一直是开启的,但其在实模式与保护模式下的运作方式并不相同的。
在实模式下,比如在引导启动的初期,段选择符是一个16位的数值,指示出一个段的开始处的物理内存地址。这个数值必须被以某种方式放大,否则它也会受限于64K当中,分段就没有意义了。比如,CPU可能会把这个段选择符当作物理内存地址的高16位(只需将之左移16位,也就是乘以216)。这个简单的规则使得:可以按64K的段为单位,一块块的将4GB的内存都寻址到。遗憾的是,Intel做了一个很诡异的设计,让段选择符仅仅乘以24(或16),一举将寻址范围限制在了1MB,还引入了过度复杂的转换过程。下述图例显示了一条跳转指令,cs的值是0x1000:
实模式分段功能
实模式的段地址以16个字节为步长,从0开始编号一直到0xFFFF0(即1MB)。你可以将一个从0到0xFFFF的16位偏移量(逻辑地址)加在段地址上。在这个规则下,对于同一个内存地址,会有多个段地址/偏移量的组合与之对应,而且物理地址可以超过1MB的边界,只要你的段地址足够高(参见臭名昭著的A20线)。同样的,在实模式的C语言代码中,一个远指针(far pointer)既包含了段选择符又包含了逻辑地址,用于寻址1MB的内存范围。真够“远”的啊。随着程序变得越来越大,超出了64K的段,分段功能以及它古怪的处理方式,使得x86平台的软件开发变得非常复杂。这种设定可能听起来有些诡异,但它却把当时的程序员推进了令人崩溃的深渊。
在32位保护模式下,段选择符不再是一个单纯的数值,取而代之的是一个索引编号,用于引用段描述符表中的表项。这个表为一个简单的数组,元素长度为8字节,每个元素描述一个段。看起来如下:
段描述符
有三种类型的段:代码,数据,系统。为了简洁明了,只有描述符的共有特征被绘制出来。基地址(base address)是一个32位的线性地址,指向段的开始;段界限(limit)指出这个段有多大。将基地址加到逻辑地址上就形成了线性地址。DPL是描述符的特权级(privilege level),其值从0(最高特权,内核模式)到3(最低特权,用户模式),用于控制对段的访问。
这些段描述符被保存在两个表中:全局描述符表(GDT)和局部描述符表(LDT)。电脑中的每一个CPU(或一个处理核心)都含有一个叫做gdtr的寄存器,用于保存GDT的首个字节所在的线性内存地址。为了选出一个段,你必须向段寄存器加载符合以下格式的段选择符:
段选择符
对GDT,TI位为0;对LDT,TI位为1;index指出想要表中哪一个段描述符(译注:原文是段选择符,应该是笔误)。对于RPL,请求特权级(Requested Privilege Level),以后我们还会详细讨论。现在,需要好好想想了。当CPU运行于32位模式时,不管怎样,寄存器和指令都可以寻址整个线性地址空间,所以根本就不需要再去使用基地址或其他什么鬼东西。那为什么不干脆将基地址设成0,好让逻辑地址与线性地址一致呢?Intel的文档将之称为“扁平模型”(flat model),而且在现代的x86系统内核中就是这么做的(特别指出,它们使用的是基本扁平模型)。基本扁平模型(basic flat model)等价于在转换地址时关闭了分段功能。如此一来多么美好啊。就让我们来看看32位保护模式下执行一个跳转指令的例子,其中的数值来自一个实际的Linux用户模式应用程序:
保护模式的分段
段描述符的内容一旦被访问,就会被cache(缓存),所以在随后的访问中,就不再需要去实际读取GDT了,否则会有损性能。每个段寄存器都有一个隐藏部分用于缓存段选择符所对应的那个段描述符。如果你想了解更多细节,包括关于LDT的更多信息,请参阅《Intel System Programming Guide》3A卷的第三章。2A和2B卷讲述了每一个x86指令,同时也指明了x86寻址时所使用的各种类型的操作数:16位,16位加段描述符(可被用于实现远指针),32位,等等。
在Linux上,只有3个段描述符在引导启动过程被使用。他们使用GDT_ENTRY宏来定义并存储在boot_gdt数组中。其中两个段是扁平的,可对整个32位空间寻址:一个是代码段,加载到cs中,一个是数据段,加载到其他段寄存器中。第三个段是系统段,称为任务状态段(Task State Segment)。在完成引导启动以后,每一个CPU都拥有一份属于自己的GDT。其中大部分内容是相同的,只有少数表项依赖于正在运行的进程。你可以从segment.h看到Linux GDT的布局以及其实际的样子。这里有4个主要的GDT表项:2个是扁平的,用于内核模式的代码和数据,另两个用于用户模式。在看这个Linux GDT时,请留意那些用于确保数据与CPU缓存线对齐的填充字节——目的是克服冯·诺依曼瓶颈。最后要说说,那个经典的Unix错误信息“Segmentation fault”(分段错误)并不是由x86风格的段所引起的,而是由于分页单元检测到了非法的内存地址。唉呀,下次再讨论这个话题吧。
Intel巧妙的绕过了他们原先设计的那个拼拼凑凑的分段方法,而是提供了一种富于弹性的方式来让我们选择是使用段还是使用扁平模型。由于很容易将逻辑地址与线性地址合二为一,于是这成为了标准,比如现在在64位模式中就强制使用扁平的线性地址空间了。但是即使是在扁平模型中,段对于x86的保护机制也十分重要。保护机制用于抵御用户模式进程对系统内核的非法内存访问,或各个进程之间的非法内存访问,否则系统将会进入一个狗咬狗的世界!在下一篇文章中,我们将窥视保护级别以及如何用段来实现这些保护功能。
相关文章:

c++ 普通高精减
//c 普通高精减 //codevs 3115 高精度练习之减法 //内容简单,就不注释了。 //注意下,&&优先级高于||。 #include<cstdio>#include<cstring>char s1[600],s2[600];int a1[600],a2[600],len1,len2,i;int main(){scanf("%s",…
腾讯提超强少样本目标检测算法,公开1000类检测训练集FSOD | CVPR 2020
作者 | VincentLee来源 | 晓飞的算法工程笔记不同于正常的目标检测任务,few-show目标检测任务需要通过几张新目标类别的图片在测试集中找出所有对应的前景。为了处理好这个任务,论文主要有两个贡献:提出一个通用的few-show目标检测算法&#…

Linux加入到Windows域 收藏
一、实验环境: AD server:windows server 2003samba:redhat as5AD server的hostname和IP地址:turbomai-c<?xml:namespace prefix st1 ns "urn:schemas-microsoft-com:office:smarttags" />89f91.test.com 192…
哈希函数原理及实现
哈希解决冲突 1000以内的素数 一般的hash实现已经总结出一些比较重要的素数: static unsigned int table_size[] {7,13,31, 61, 127, 251, 509, 1021,2039, 4093, 8191, 16381, 32749, 65521,1310…
基于Virtual DOM与Diff DOM的测试代码生成
尽管是在年末,并且也还没把书翻译完,也还没写完书的第一稿。但是,我还是觉得这是一个非常不错的话题——测试代码生成。当我们在写一些UI测试的时候,我们总需要到浏览器去看一下一些DOM的变化。比如,我们点击了某个下拉…

Win32 环境下的堆栈
原文已经找不到,作者应该是:http://blog.csdn.net/slimak 但是没有找到此文,其中丢了2幅图 简介 在Win32环境下利用调试器调试应用程序的时候经常要和堆栈(Stack)打交道,尤其是在需要手工遍历堆栈(Manually Walking Stack)的时候我们需要…

在VMWare中配置SQLServer2005集群 Step by Step(四)——集群安装
在VMWare 中配置集群 1. 进入command 命令窗口执行以下命令,创建仲裁磁盘和共享数据磁盘 vmware-vdiskmanager.exe -c -s 200Mb -a lsilogic -t 2 F:\VM\Share\Windows\SQLServer\quorum.vmdk vmware-vdiskmanager.exe -c -s 4Gb -a lsilogic -t 2 F:\VM\Share\Wind…
口罩检测识别率惊人,这个Python项目开源了
作者 | 一颗小树x,CSDN 博主编辑 | 唐小引来源 | CSDN 博客昨天在 GitHub 上看到一个有趣的开源项目,它能检测我们是否有戴口罩,跑起程序测试后,发现识别率挺高的,也适应不同环境,于是分享给大家。首先感谢…

CentOS搭建msmtp+mutt实现邮件发送
1:搭建配置msmtp下载msmtp包:官方地址:http://msmtp.sourceforge.net/download.html编译,安装(官方下载的包为tar.xz格式):#xz -d msmtp-1.6.3.tar.xz #tar -xvf msmtp-1.6.3.tar #cd msmtp-1.6.3 #./configure --prefix /opt/app…
Linux环境下的堆栈--调试C程序
完整的调试过程,跟踪堆栈变化,32位下。 注意64位和此不同。 a.c代码: #include <stdio.h> int main() { AFunc(5,6);return 0; } int BFunc(int i,int j) {int m 1;int n 2;m i;n j; return m; }int AFunc(int i,int j) {…
听说过代码洁癖,Bug洁癖怎么解?
来源 | Python编程时光(ID: Cool-Python)当我们写的一个脚本或程序发生各种不可预知的异常时,如果我们没有进行捕获处理的时候,通常都会致使程序崩溃退出,并且会在终端打印出一堆 密密麻麻 的 traceback 堆栈信息来告诉…

POJO、VO、PO、FormBean区别:
首先讲一下四者的概念 POJO:Pure Old Java Object,符合Java Bean属性规范的简单Java对象,通常也称为VO(Value Object,值对象)。 VO:就是POJO; PO: Persistent Object,持久化对…

oracle中的sql%rowcount,sql%found、sql%notfound、sql%rowcount和sql%isopen
Oracle 存储过程 删除表记录时删除不存在的记录也是显示删除成功 create or replace procedure delDept(p_deptno in dept.deptno%type) is begindelete from dept where deptnop_deptno;dbms_output.put_line(部门删除成功...);exception when others thendbms_output.put_lin…

linux平台的链接与加载
原文是上下两篇 链接与加载(上) — 静态链接链接与加载(下) — 动态链接 为观看方便,现在合并起来。 一.静态链接 示例程序 我们先看一个简单的示例程序,代码如下: /*main.c*/int u 333;int sum(int, int);int main(int argc, char* argv…
预训练模型ProphetNet:根据未来文本信息进行自然语言生成
作者 | 刘大一恒、齐炜祯、晏宇、宫叶云、段楠、周明来源 | 微软研究院AI头条(ID:MSRAsia)编者按:微软亚洲研究院提出新的预训练模型 ProphetNet,提出了一种新的自监督学习目标——同时预测多个未来字符,在序列到序列的…

模拟进程管理小结,编码规范的重要性
废话不多说了,省的又有衰人找我麻烦。希望我讨厌的,和讨厌我的少来骚扰我,由衷的感谢它们。 我不回那些骚扰,是因为我见到名字就直接删了,看都懒的看了。也别怪我粗鲁,因为我一向是对什么人说什么话 的&…

JSPServlet路径问题
2019独角兽企业重金招聘Python工程师标准>>> 如果带WebRoot,那么js、css、img都应该放到WebRoot目录下,否则访问会有问题。千万不要放在WEB-INF下,因为WEB-INF下的内容只有服务器转发可以访问到,出于安全考虑。 如果不…

Git学习教程(六)Git日志
第六课 Git 日志 内容提要:浏览项目历史,查询指定提交内容,图形化显示分枝和合并...git log是git中最常用的一个命令,执行之后,会显示该项目的提交历史。如果命令不加任何参数,那么就会显示目前所在分枝上&…

汇编包含C代码
反汇编的时候带上C代码便于观察 比较三元表达式和if else的差异 a1.c #include <stdio.h> int main(void) { int a1;int b2;int c0;a (b>c)?1:0;return 0;} a2.c #include <stdio.h> int main(void) { int a1;int b2;int c0;if(b>c){a1;}else{a0;…
无需3D运动数据训练,最新人体姿势估计方法达到SOTA | CVPR 2020
作者 | Muhammed Kocabas译者 | 刘畅出品 | AI科技大本营(ID:rgznai100)人体的运动对于理解人的行为是非常重要的。尽管目前已经在单图像3D姿势和动作估计方面取得了进展,但由于缺少用于训练的真实的3D运动数据,因此现有的基于视频…

Linux内核跟踪之trace框架分析【转】
转自:http://blog.chinaunix.net/uid-20543183-id-1930846.html------------------------------------------本文系本站原创,欢迎转载!转载请注明出处:http://ericxiao.cublog.cn/------------------------------------------一: 前言本文主要是对trace的框架做详尽…
写给Python开发者:机器学习十大必备技能
作者 | Pratik Bhavsar译者 | 明明如月,编辑 | 夕颜来源 | CSDN(ID:CSDNnews)有时候,作为一个数据科学家,我们常常忘记了初心。我们首先是一个开发者,然后才是研究人员,最后才可能是数学家。我…

Linux环境程序栈溢出原理
当在缓冲区中输入过多的数据时,缓冲区溢出就会发生,C语言提供了多种方法,可以使在缓冲区中输入的数据比预期的多。 局部变量可以被分配到栈上。这就意味着在栈的某个地方有一个固定大小的缓冲区。 而栈是向下增长的,而且一些重要…

[翻译]Joomla 1.5架构(十一) model 包
这个包包含了跟数据表交互的所有相关类 JModel This abstract class is the base class for all Joomla! data access objects. 所有数据访问类的抽象基类。 以下的类都分别实现对不同表的访问,不再翻译了。 Adapter Folder JModelCategory This is a data access …

度量快速开发平台端口映射的介绍
度量快速开发平台在客户中部署的时候,可能会想内网与外网用户同时使用。一般情况下,服务端都是部署在内网的,那外网用户要访问,就可能用到端口映射的功能。端口映射基本都是在路由器上进行。下面就是几个常用的路由器上的设置方法…

为什么栈和堆的生长方向不一样
栈的生长方向 8051的栈是向高地址增长,INTEL的8031、8032、8048、8051系列使用向高地址增长的堆栈;但同样是INTEL,在x86系列中全部使用向低地址增长的堆栈。其他公司的CPU中除ARM的结构提供向高地址增长的堆栈选项外,多数都是使用…
简单粗暴理解与实现机器学习之逻辑回归:逻辑回归介绍、应用场景、原理、损失以及优化...
作者 | 汪雯琦责编 | Carol来源 | CSDN 博客出品 | AI科技大本营(ID:rgznai100)学习目标知道逻辑回归的损失函数知道逻辑回归的优化方法知道sigmoid函数知道逻辑回归的应用场景应用LogisticRegression实现逻辑回归预测知道精确率、召回率指标的区别知道如…

生命的脆弱——悼念朋友
生命的脆弱让我们敲希望的钟啊多少祈祷在心中让大家看不到失败叫成功永远在让地球忘记了转动啊四季少了夏秋冬让宇宙关不了天窗叫太阳不西沉让欢喜代替了哀愁啊微笑不会再害羞让时光懂得去倒流叫青春不开溜让贫穷开始去逃亡啊快乐健康留四方让世界找不到黑暗幸福像花开放让大家…

VMware Tools手动下载
2019独角兽企业重金招聘Python工程师标准>>> VMware自己下载VMware Tools非常慢。你可以自己手动下载它。 下载地址为: version: 8.8.2 http://softwareupdate.vmware.com/cds/vmw-desktop/ws/8.0.3/ 选择最新的build,例如: http:…

Linux查看多核CPU利用率
1.top 使用权限:所有使用者 使用方式:top [-] [d delay] [q] [c] [S] [s] [i] [n] [b] 说明:即时显示process的动态 d :改变显示的更新速度,或是在交谈式指令列( interactive command)按s q :没有任何延迟的显示速度…