当前位置: 首页 > 编程日记 > 正文

Numpy入门教程:04. 数学函数

背景

什么是 NumPy 呢?

NumPy 这个词来源于两个单词 – NumericalPython。其是一个功能强大的 Python 库,可以帮助程序员轻松地进行数值计算,通常应用于以下场景:

  • 执行各种数学任务,如:数值积分、微分、内插、外推等。因此,当涉及到数学任务时,它形成了一种基于 Python 的 MATLAB 的快速替代。
  • 计算机中的图像表示为多维数字数组。NumPy 提供了一些优秀的库函数来快速处理图像。例如,镜像图像、按特定角度旋转图像等。
  • 在编写机器学习算法时,需要对矩阵进行各种数值计算。如:矩阵乘法、求逆、换位、加法等。NumPy 数组用于存储训练数据和机器学习模型的参数。

向量化和广播

向量化和广播这两个概念是 numpy 内部实现的基础。有了向量化,编写代码时无需使用显式循环。这些循环实际上不能省略,只不过是在内部实现,被代码中的其他结构代替。向量化的应用使得代码更简洁,可读性更强,也可以说使用了向量化方法的代码看上去更“Pythonic”。

广播(Broadcasting)机制描述了 numpy 如何在算术运算期间处理具有不同形状的数组,让较小的数组在较大的数组上“广播”,以便它们具有兼容的形状。并不是所有的维度都要彼此兼容才符合广播机制的要求,但它们必须满足一定的条件。

若两个数组的各维度兼容,也就是两个数组的每一维等长,或其中一个数组为一维,那么广播机制就适用。如果这两个条件不满足,numpy就会抛出异常,说两个数组不兼容。

【例】

import numpy as npx = np.arange(4)
xx = x.reshape(4, 1)
y = np.ones(5)
z = np.ones((3, 4))print(x.shape)  # (4,)
print(y.shape)  # (5,)
print(xx.shape)  # (4, 1)
print(z.shape)  # (3, 4)print(x + y)
# ValueError: operands could not be broadcast together with shapes (4,) (5,) print((xx + y).shape)  # (4, 5)
print(xx + y)
# [[1. 1. 1. 1. 1.]
#  [2. 2. 2. 2. 2.]
#  [3. 3. 3. 3. 3.]
#  [4. 4. 4. 4. 4.]]print((x + z).shape)  # (3, 4)
print(x + z)
# [[1. 2. 3. 4.]
#  [1. 2. 3. 4.]
#  [1. 2. 3. 4.]]a = np.array([0.0, 10.0, 20.0, 30.0])
b = np.array([1.0, 2.0, 3.0])
c = a[:, np.newaxis] + b
print(c)
# [[ 1.  2.  3.]
#  [11. 12. 13.]
#  [21. 22. 23.]
#  [31. 32. 33.]]

数学函数

算数运算

  • numpy.add(x1, x2, *args, **kwargs) Add arguments element-wise.
  • numpy.subtract(x1, x2, *args, **kwargs) Subtract arguments element-wise.
  • numpy.multiply(x1, x2, *args, **kwargs) Multiply arguments element-wise.
  • numpy.divide(x1, x2, *args, **kwargs) Returns a true division of the inputs, element-wise.
  • numpy.floor_divide(x1, x2, *args, **kwargs) Return the largest integer smaller or equal to the division of the inputs.
  • numpy.power(x1, x2, *args, **kwargs) First array elements raised to powers from second array, element-wise.

在 numpy 中对以上函数进行了运算符的重载,且运算符为 元素级。也就是说,它们只用于位置相同的元素之间,所得到的运算结果组成一个新的数组。

【例】

import numpy as npx = np.array([1, 2, 3, 4, 5, 6, 7, 8])
y = x + 1
print(y)
print(np.add(x, 1))
# [2 3 4 5 6 7 8 9]y = x - 1
print(y)
print(np.subtract(x, 1))
# [0 1 2 3 4 5 6 7]y = x * 2
print(y)
print(np.multiply(x, 2))
# [ 2  4  6  8 10 12 14 16]y = x / 2
print(y)
print(np.divide(x, 2))
# [0.5 1.  1.5 2.  2.5 3.  3.5 4. ]y = x // 2
print(y)
print(np.floor_divide(x, 2))
# [0 1 1 2 2 3 3 4]y = x ** 2
print(y)
print(np.power(x, 2))
# [ 1  4  9 16 25 36 49 64]

【例】

import numpy as npx = np.array([[11, 12, 13, 14, 15],[16, 17, 18, 19, 20],[21, 22, 23, 24, 25],[26, 27, 28, 29, 30],[31, 32, 33, 34, 35]])
y = x + 1
print(y)
print(np.add(x, 1))
# [[12 13 14 15 16]
#  [17 18 19 20 21]
#  [22 23 24 25 26]
#  [27 28 29 30 31]
#  [32 33 34 35 36]]y = x - 1
print(y)
print(np.subtract(x, 1))
# [[10 11 12 13 14]
#  [15 16 17 18 19]
#  [20 21 22 23 24]
#  [25 26 27 28 29]
#  [30 31 32 33 34]]y = x * 2
print(y)
print(np.multiply(x, 2))
# [[22 24 26 28 30]
#  [32 34 36 38 40]
#  [42 44 46 48 50]
#  [52 54 56 58 60]
#  [62 64 66 68 70]]y = x / 2
print(y)
print(np.divide(x, 2))
# [[ 5.5  6.   6.5  7.   7.5]
#  [ 8.   8.5  9.   9.5 10. ]
#  [10.5 11.  11.5 12.  12.5]
#  [13.  13.5 14.  14.5 15. ]
#  [15.5 16.  16.5 17.  17.5]]y = x // 2
print(y)
print(np.floor_divide(x, 2))
# [[ 5  6  6  7  7]
#  [ 8  8  9  9 10]
#  [10 11 11 12 12]
#  [13 13 14 14 15]
#  [15 16 16 17 17]]y = x ** 2
print(y)
print(np.power(x, 2))
# [[ 121  144  169  196  225]
#  [ 256  289  324  361  400]
#  [ 441  484  529  576  625]
#  [ 676  729  784  841  900]
#  [ 961 1024 1089 1156 1225]]

【例】

import numpy as npx = np.array([[11, 12, 13, 14, 15],[16, 17, 18, 19, 20],[21, 22, 23, 24, 25],[26, 27, 28, 29, 30],[31, 32, 33, 34, 35]])y = np.arange(1, 6)
print(y)
# [1 2 3 4 5]z = x + y
print(z)
print(np.add(x, y))
# [[12 14 16 18 20]
#  [17 19 21 23 25]
#  [22 24 26 28 30]
#  [27 29 31 33 35]
#  [32 34 36 38 40]]z = x - y
print(z)
print(np.subtract(x, y))
# [[10 10 10 10 10]
#  [15 15 15 15 15]
#  [20 20 20 20 20]
#  [25 25 25 25 25]
#  [30 30 30 30 30]]z = x * y
print(z)
print(np.multiply(x, y))
# [[ 11  24  39  56  75]
#  [ 16  34  54  76 100]
#  [ 21  44  69  96 125]
#  [ 26  54  84 116 150]
#  [ 31  64  99 136 175]]z = x / y
print(z)
print(np.divide(x, y))
# [[11.          6.          4.33333333  3.5         3.        ]
#  [16.          8.5         6.          4.75        4.        ]
#  [21.         11.          7.66666667  6.          5.        ]
#  [26.         13.5         9.33333333  7.25        6.        ]
#  [31.         16.         11.          8.5         7.        ]]z = x // y
print(z)
print(np.floor_divide(x, y))
# [[11  6  4  3  3]
#  [16  8  6  4  4]
#  [21 11  7  6  5]
#  [26 13  9  7  6]
#  [31 16 11  8  7]]z = x ** np.full([1, 5], 2)
print(z)
print(np.power(x, np.full([5, 5], 2)))
# [[ 121  144  169  196  225]
#  [ 256  289  324  361  400]
#  [ 441  484  529  576  625]
#  [ 676  729  784  841  900]
#  [ 961 1024 1089 1156 1225]]

【例】

import numpy as npx = np.array([[11, 12, 13, 14, 15],[16, 17, 18, 19, 20],[21, 22, 23, 24, 25],[26, 27, 28, 29, 30],[31, 32, 33, 34, 35]])y = np.arange(1, 26).reshape([5, 5])
print(y)
# [[ 1  2  3  4  5]
#  [ 6  7  8  9 10]
#  [11 12 13 14 15]
#  [16 17 18 19 20]
#  [21 22 23 24 25]]z = x + y
print(z)
print(np.add(x, y))
# [[12 14 16 18 20]
#  [22 24 26 28 30]
#  [32 34 36 38 40]
#  [42 44 46 48 50]
#  [52 54 56 58 60]]z = x - y
print(z)
print(np.subtract(x, y))
# [[10 10 10 10 10]
#  [10 10 10 10 10]
#  [10 10 10 10 10]
#  [10 10 10 10 10]
#  [10 10 10 10 10]]z = x * y
print(z)
print(np.multiply(x, y))
# [[ 11  24  39  56  75]
#  [ 96 119 144 171 200]
#  [231 264 299 336 375]
#  [416 459 504 551 600]
#  [651 704 759 816 875]]z = x / y
print(z)
print(np.divide(x, y))
# [[11.          6.          4.33333333  3.5         3.        ]
#  [ 2.66666667  2.42857143  2.25        2.11111111  2.        ]
#  [ 1.90909091  1.83333333  1.76923077  1.71428571  1.66666667]
#  [ 1.625       1.58823529  1.55555556  1.52631579  1.5       ]
#  [ 1.47619048  1.45454545  1.43478261  1.41666667  1.4       ]]z = x // y
print(z)
print(np.floor_divide(x, y))
# [[11  6  4  3  3]
#  [ 2  2  2  2  2]
#  [ 1  1  1  1  1]
#  [ 1  1  1  1  1]
#  [ 1  1  1  1  1]]z = x ** np.full([5, 5], 2)
print(z)
print(np.power(x, np.full([5, 5], 2)))
# [[ 121  144  169  196  225]
#  [ 256  289  324  361  400]
#  [ 441  484  529  576  625]
#  [ 676  729  784  841  900]
#  [ 961 1024 1089 1156 1225]]

三角函数

  • numpy.sin(x, *args, **kwargs) Trigonometric sine, element-wise.
  • numpy.cos(x, *args, **kwargs) Cosine element-wise.
  • numpy.tan(x, *args, **kwargs) Compute tangent element-wise.
  • numpy.arcsin(x, *args, **kwargs) Inverse sine, element-wise.
  • numpy.arccos(x, *args, **kwargs) Trigonometric inverse cosine, element-wise.
  • numpy.arctan(x, *args, **kwargs) Trigonometric inverse tangent, element-wise.

通用函数(universal function)通常叫作ufunc,它对数组中的各个元素逐一进行操作。这表明,通用函数分别处理输入数组的每个元素,生成的结果组成一个新的输出数组。输出数组的大小跟输入数组相同。

三角函数等很多数学运算符合通用函数的定义,例如,计算平方根的sqrt()函数、用来取对数的log()函数和求正弦值的sin()函数。

【例】

import numpy as npx = np.linspace(start=0, stop=np.pi / 2, num=10)
print(x)
# [0.         0.17453293 0.34906585 0.52359878 0.6981317  0.87266463
#  1.04719755 1.22173048 1.3962634  1.57079633]y = np.sin(x)
print(y)
# [0.         0.17364818 0.34202014 0.5        0.64278761 0.76604444
#  0.8660254  0.93969262 0.98480775 1.        ]z = np.arcsin(y)
print(z)
# [0.         0.17453293 0.34906585 0.52359878 0.6981317  0.87266463
#  1.04719755 1.22173048 1.3962634  1.57079633]y = np.cos(x)
print(y)
# [1.00000000e+00 9.84807753e-01 9.39692621e-01 8.66025404e-01
#  7.66044443e-01 6.42787610e-01 5.00000000e-01 3.42020143e-01
#  1.73648178e-01 6.12323400e-17]z = np.arccos(y)
print(z)
# [0.         0.17453293 0.34906585 0.52359878 0.6981317  0.87266463
#  1.04719755 1.22173048 1.3962634  1.57079633]y = np.tan(x)
print(y)
# [0.00000000e+00 1.76326981e-01 3.63970234e-01 5.77350269e-01
#  8.39099631e-01 1.19175359e+00 1.73205081e+00 2.74747742e+00
#  5.67128182e+00 1.63312394e+16]z = np.arctan(y)
print(z)
# [0.         0.17453293 0.34906585 0.52359878 0.6981317  0.87266463
#  1.04719755 1.22173048 1.3962634  1.57079633]

指数和对数

  • numpy.exp(x, *args, **kwargs) Calculate the exponential of all elements in the input array.
  • numpy.log(x, *args, **kwargs) Natural logarithm, element-wise.
  • numpy.exp2(x, *args, **kwargs) Calculate 2**p for all p in the input array.
  • numpy.log2(x, *args, **kwargs) Base-2 logarithm of x.
  • numpy.log10(x, *args, **kwargs) Return the base 10 logarithm of the input array, element-wise.

【例】The natural logarithm log is the inverse of the exponential function, so that log(exp(x)) = x. The natural logarithm is logarithm in base e.

import numpy as npx = np.arange(1, 5)
print(x)
# [1 2 3 4]
y = np.exp(x)
print(y)
# [ 2.71828183  7.3890561  20.08553692 54.59815003]
z = np.log(y)
print(z)
# [1. 2. 3. 4.]

加法与乘法函数

  • numpy.sum(a[, axis=None, dtype=None, out=None, …]) Sum of array elements over a given axis.

通过不同的 axis,numpy 会沿着不同的方向进行操作:如果不设置,那么对所有的元素操作;如果axis=0,则沿着纵轴进行操作;axis=1,则沿着横轴进行操作。但这只是简单的二位数组,如果是多维的呢?可以总结为一句话:++设axis=i,则 numpy 沿着第i个下标变化的方向进行操作++。

聚合函数 是指对一组值(比如一个数组)进行操作,返回一个单一值作为结果的函数。因而,求数组所有元素之和的函数就是聚合函数。ndarray类实现了多个这样的函数。

【例】返回给定轴上的数组元素的总和。

import numpy as npx = np.array([[11, 12, 13, 14, 15],[16, 17, 18, 19, 20],[21, 22, 23, 24, 25],[26, 27, 28, 29, 30],[31, 32, 33, 34, 35]])
y = np.sum(x)
print(y)  # 575y = np.sum(x, axis=0)
print(y)  # [105 110 115 120 125]y = np.sum(x, axis=1)
print(y)  # [ 65  90 115 140 165]
  • numpy.cumsum(a, axis=None, dtype=None, out=None) Return the cumulative sum of the elements along a given axis.

【例】返回给定轴上的数组元素的累加和。

import numpy as npx = np.array([[11, 12, 13, 14, 15],[16, 17, 18, 19, 20],[21, 22, 23, 24, 25],[26, 27, 28, 29, 30],[31, 32, 33, 34, 35]])
y = np.cumsum(x)
print(y)
# [ 11  23  36  50  65  81  98 116 135 155 176 198 221 245 270 296 323 351
#  380 410 441 473 506 540 575]y = np.cumsum(x, axis=0)
print(y)
# [[ 11  12  13  14  15]
#  [ 27  29  31  33  35]
#  [ 48  51  54  57  60]
#  [ 74  78  82  86  90]
#  [105 110 115 120 125]]y = np.cumsum(x, axis=1)
print(y)
# [[ 11  23  36  50  65]
#  [ 16  33  51  70  90]
#  [ 21  43  66  90 115]
#  [ 26  53  81 110 140]
#  [ 31  63  96 130 165]]
  • numpy.prod(a[, axis=None, dtype=None, out=None, …]) Return the product of array elements over a given axis.

【例】返回给定轴上数组元素的乘积。

import numpy as npx = np.array([[11, 12, 13, 14, 15],[16, 17, 18, 19, 20],[21, 22, 23, 24, 25],[26, 27, 28, 29, 30],[31, 32, 33, 34, 35]])
y = np.prod(x)
print(y)  # 788529152y = np.prod(x, axis=0)
print(y)
# [2978976 3877632 4972968 6294624 7875000]y = np.prod(x, axis=1)
print(y)
# [  360360  1860480  6375600 17100720 38955840]
  • numpy.cumprod(a, axis=None, dtype=None, out=None) Return the cumulative product of elements along a given axis.

【例】返回给定轴上数组元素的累乘。

import numpy as npx = np.array([[11, 12, 13, 14, 15],[16, 17, 18, 19, 20],[21, 22, 23, 24, 25],[26, 27, 28, 29, 30],[31, 32, 33, 34, 35]])
y = np.cumprod(x)
print(y)
# [         11         132        1716       24024      360360     5765760
#     98017920  1764322560  -837609728   427674624   391232512    17180672
#    395155456   893796352   870072320  1147043840   905412608  -418250752
#    755630080  1194065920 -1638662144  -897581056   444596224 -2063597568
#    788529152]y = np.cumprod(x, axis=0)
print(y)
# [[     11      12      13      14      15]
#  [    176     204     234     266     300]
#  [   3696    4488    5382    6384    7500]
#  [  96096  121176  150696  185136  225000]
#  [2978976 3877632 4972968 6294624 7875000]]y = np.cumprod(x, axis=1)
print(y)
# [[      11      132     1716    24024   360360]
#  [      16      272     4896    93024  1860480]
#  [      21      462    10626   255024  6375600]
#  [      26      702    19656   570024 17100720]
#  [      31      992    32736  1113024 38955840]]

四舍五入

  • numpy.around(a, decimals=0, out=None) Evenly round to the given number of decimals.

【例】将数组舍入到给定的小数位数。

import numpy as npx = np.random.rand(3, 3) * 10
print(x)
# [[6.59144457 3.78566113 8.15321227]
#  [1.68241475 3.78753332 7.68886328]
#  [2.84255822 9.58106727 7.86678037]]y = np.around(x)
print(y)
# [[ 7.  4.  8.]
#  [ 2.  4.  8.]
#  [ 3. 10.  8.]]y = np.around(x, decimals=2)
print(y)
# [[6.59 3.79 8.15]
#  [1.68 3.79 7.69]
#  [2.84 9.58 7.87]]
  • numpy.ceil(x, *args, **kwargs) Return the ceiling of the input, element-wise.
  • numpy.floor(x, *args, **kwargs) Return the floor of the input, element-wise.

【例】

import numpy as npx = np.random.rand(3, 3) * 10
print(x)
# [[0.67847795 1.33073923 4.53920122]
#  [7.55724676 5.88854047 2.65502046]
#  [8.67640444 8.80110812 5.97528726]]y = np.ceil(x)
print(y)
# [[1. 2. 5.]
#  [8. 6. 3.]
#  [9. 9. 6.]]y = np.floor(x)
print(y)
# [[0. 1. 4.]
#  [7. 5. 2.]
#  [8. 8. 5.]]

杂项

  • numpy.clip(a, a_min, a_max, out=None, **kwargs): Clip (limit) the values in an array.

Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of [0, 1] is specified, values smaller than 0 become 0, and values larger than 1 become 1.

【例】裁剪(限制)数组中的值。

import numpy as npx = np.array([[11, 12, 13, 14, 15],[16, 17, 18, 19, 20],[21, 22, 23, 24, 25],[26, 27, 28, 29, 30],[31, 32, 33, 34, 35]])
y = np.clip(x, a_min=20, a_max=30)
print(y)
# [[20 20 20 20 20]
#  [20 20 20 20 20]
#  [21 22 23 24 25]
#  [26 27 28 29 30]
#  [30 30 30 30 30]]
  • numpy.sqrt(x, *args, **kwargs) Return the non-negative square-root of an array, element-wise.
  • numpy.square(x, *args, **kwargs) Return the element-wise square of the input.

【例】

import numpy as npx = np.arange(1, 5)
print(x)  # [1 2 3 4]y = np.sqrt(x)
print(y)
# [1.         1.41421356 1.73205081 2.        ]y = np.square(x)
print(y)
# [ 1  4  9 16]
  • numpy.absolute(x, *args, **kwargs) Calculate the absolute value element-wise.
  • numpy.abs(x, *args, **kwargs) is a shorthand for this function.

【例】

import numpy as npx = np.arange(-5, 5)
print(x)
# [-5 -4 -3 -2 -1  0  1  2  3  4]y = np.abs(x)
print(y)
# [5 4 3 2 1 0 1 2 3 4]y = np.absolute(x)
print(y)
# [5 4 3 2 1 0 1 2 3 4]

当前活动


我是 终身学习者“老马”,一个长期践行“结伴式学习”理念的 中年大叔

我崇尚分享,渴望成长,于2010年创立了“LSGO软件技术团队”,并加入了国内著名的开源组织“Datawhale”,也是“Dre@mtech”、“智能机器人研究中心”和“大数据与哲学社会科学实验室”的一员。

愿我们一起学习,一起进步,相互陪伴,共同成长。

后台回复「搜搜搜」,随机获取电子资源!
欢迎关注,请扫描二维码:

相关文章:

SAXParserFactory之求解

SAX是Simple API for XML的简称,在Android里面提供对XML文件的解析接口方法,如果给我们一个XML文件,要求把里面我们关心的数据解析出来,我们就可以使用SAX技术,在具体使用中,会对XML文件的每一个字符逐一读取并出发相应…

学习Java知识应该注意哪些基础原则

想要做java程序猿,学习起来没有那么快的,尤其是零基础学员,java技术在学习的过程中是比较枯燥的,下面小编就为大家详细的介绍一下学习Java知识应该注意哪些基础原则,方便大家在学习的时候能够更加有效率! 学习Java知识…

Numpy入门教程:05. 逻辑函数

背景 什么是 NumPy 呢? NumPy 这个词来源于两个单词 – Numerical和Python。其是一个功能强大的 Python 库,可以帮助程序员轻松地进行数值计算,通常应用于以下场景: 执行各种数学任务,如:数值积分、微分、…

git获取指定release版本代码

首先手里必须有release的版本的备份出来的/.repo/manifests/default.xml文件,该文件记录了每个git库的在该版本下的具体的版本情况,整个代码的sync都是依据他来的; 1、repo sync 将本地代码更新至最新; 2、将手里的manifests.xml&…

【内网福音】如何离线部署Rancher

2019独角兽企业重金招聘Python工程师标准>>> 对于在公司内网环境中、无法访问互联网的用户而言,离线安装部署Rancher是解决问题的关键。本文是Rancher离线部署教程,专为内网用户排坑解难。 版本说明 OS:Centos7.3 Docker version:…

JAVA工资高吗

JAVA工资高吗?很多人都是非常关注这个问题的,近几年,java技术在互联网行业有了自己的一席之地,越来越多的人都投身到java技术行业,下面我们来看看详细的介绍。 JAVA工资高吗? 近年来,在美国、加拿大、澳大利亚、新加坡等发达国家…

Numpy入门教程:06. 排序,搜索和计数

背景 什么是 NumPy 呢? NumPy 这个词来源于两个单词 – Numerical和Python。其是一个功能强大的 Python 库,可以帮助程序员轻松地进行数值计算,通常应用于以下场景: 执行各种数学任务,如:数值积分、微分、…

活动目录在构建核心过程中的八个关键点(下)

活动目录是一个面向Windows Server级别的目录服务。在之前的博客文章中介绍了活动目录设计中需要遵循的七个原则,今天在这里讲解有关《活动目录构建核心关键点》。 全文请见专题:http://os.51cto.com/art/201104/254054.htm 5. LDAP协议简介 LDAP的英文全…

smarty变量调节器--count_words[计算词数]

计算变量里的词数 。 Example 5-7. count_words <?php$smarty->assign(articleTitle, Dealers Will Hear Car Talk at Noon.);?>Where template is:{$articleTitle}{$articleTitle|count_words}This will output:Dealers Will Hear Car Talk at Noon.7 See also cou…

如何开发属于自己的第一个Java程序

学习java技术都是循序渐进的&#xff0c;搭建好了Java开发环境之后&#xff0c;下面就来学习一下如何开发Java程序。为了让初学者更好地完成第一个Java程序&#xff0c;接下来小编通过几个步骤进行逐一讲解。 1.编写Java源文件 在D盘根目录下新建一个test文件夹&#xff0c;并在…

Numpy入门教程:07. 随机抽样

背景 什么是 NumPy 呢&#xff1f; NumPy 这个词来源于两个单词 – Numerical和Python。其是一个功能强大的 Python 库&#xff0c;可以帮助程序员轻松地进行数值计算&#xff0c;通常应用于以下场景&#xff1a; 执行各种数学任务&#xff0c;如&#xff1a;数值积分、微分、…

如何成为一个Android高手

很多Android开发者已经度过了初级、中级&#xff0c;如何成为一个Android高手呢&#xff1f; eoeAndroid就各个级别的程序员应该掌握哪些内容作为下面分类. 一、初级 1. 拥有娴熟的Java基础&#xff0c;理解设计模式&#xff0c;比如OOP语言的工厂模式要懂得. 2. 掌握Android U…

云终端处理器——Atom

由于上周展会的缘故&#xff0c;开始对云终端【I】处理器产生兴趣&#xff0c;接下来在“物理层”【II】来理解下X86-Atom&#xff0c;ARM&#xff0c;MIPS三种处理器&#xff0c;这是第一篇&#xff0c;主Atom Intel公司的官网简单介绍了一句 “英特尔 凌动【III】 处理器&am…

Java培训的学费标准是多少

​ 很多想要进入到互联网行业的小伙伴都会选择java这门编程语言&#xff0c;java编程语言技术在互联网公司是起着非常重要的作用的&#xff0c;那么如今市面上的java培训机构有很多&#xff0c;选择报Java培训的学费标准是多少呢?来看看下面的详细介绍。 ​  Java培训的学费…

Numpy入门教程:08. 集合操作

背景 什么是 NumPy 呢&#xff1f; NumPy 这个词来源于两个单词 – Numerical和Python。其是一个功能强大的 Python 库&#xff0c;可以帮助程序员轻松地进行数值计算&#xff0c;通常应用于以下场景&#xff1a; 执行各种数学任务&#xff0c;如&#xff1a;数值积分、微分、…

iPhone开发技巧之工具篇(4)--- 使用afconvert转换WAV文件

转载自&#xff1a;http://www.yifeiyang.net/iphone-development-skills-of-tool-papers-4-wav-file-conversion-using-afconvert/ 程序中经常使用 .WAV 的音效文件&#xff0c;虽然可以直接使用它&#xff0c;但是最好转换为 apple 推荐的 .CAF 格式。 这个时候我们就可以使用…

SQLite与pandas

以下链接对SQLite使用方法总结的很棒&#xff1a; http://www.cnblogs.com/yuxc/archive/2011/08/18/2143606.html 有关利用pandas读写QSLite的内容&#xff0c;可参考以下链接&#xff1a; http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_sql.html http:…

零基础学习java,这些书一定要看!

学习java技术除了看视频&#xff0c;看书也是非常重要的&#xff0c;尤其是零基础同学&#xff0c;本文包含学习Java各个阶段的书籍推荐&#xff0c;史上最全&#xff0c;学习Java&#xff0c;没有书籍怎么行&#xff0c;就好比出征没带兵器一个道理&#xff0c;这些书籍整理出…

Numpy入门教程:练习作业01

序言 什么是 NumPy 呢&#xff1f; NumPy 这个词来源于两个单词 – Numerical和Python。其是一个功能强大的 Python 库&#xff0c;可以帮助程序员轻松地进行数值计算&#xff0c;通常应用于以下场景&#xff1a; 执行各种数学任务&#xff0c;如&#xff1a;数值积分、微分、…

转乱码UTF8和UTF-8网页编码

http://www.lovelucy.info/utf8-vs-utf-8.html#more-794 一、遇到的问题 曾经被字符集间复杂的转换搞怕了&#xff0c;正好新项目要求国际化&#xff0c;需要能够显示多种语言&#xff0c;于是一开始就规定统统使用 UTF-8 编码。 所有代码文件使用 UTF-8 编码存盘MySQL数据库所…

linux管道的执行顺序

最近有个疑问&#xff0c;netstat -antup|head -500 类似这条命令中&#xff0c;是netstat 执行完然后截取前500条记录还是&#xff0c;netstat 与head 并行执行&#xff0c;netstat 执行完500条就不再继续&#xff1f; 最终答案由酷学园darkdanger大大提供&#xff1a; 唔…

为什么学习Python数据分析

为什么学习Python数据分析?这是很多人都比较关注的一个问题&#xff0c;Python编程语言近几年在互联网行业是非常火爆的&#xff0c;尤其是在人工智能这一领域&#xff0c;它会大大的提高我们的工作效率等等&#xff0c;具体来看看下面的详细介绍就知道了。 为什么学习Python数…

Python自动化开发学习6

引子 假设我们要在我们的程序里表示狗&#xff0c;狗有如下属性&#xff1a;名字、品种、颜色。那么可以先定义一个模板&#xff0c;然后调用这个模板生成各种狗。 def dog(name,d_type,color):data {name:name,d_type:d_type,color:color}return data d1 dog(小七,拉布拉多,…

Numpy入门教程:09. 输入和输出

背景 什么是 NumPy 呢&#xff1f; NumPy 这个词来源于两个单词 – Numerical和Python。其是一个功能强大的 Python 库&#xff0c;可以帮助程序员轻松地进行数值计算&#xff0c;通常应用于以下场景&#xff1a; 执行各种数学任务&#xff0c;如&#xff1a;数值积分、微分、…

第二语言综合征

前些天在看一本书&#xff0c;温伯格的《理解专业程序员》&#xff0c;其中提到有的程序员得了第二语言综合征——在学习第三、第四门语言的时候很容易&#xff0c;但是学习第二门简直能要了他们的命。我当时就确定我患了这个毛病&#xff0c;因为我一直想了解Java语言&#xf…

Python文件操作:finally子句的使用

finally子句与try-except语句连用时&#xff0c;无论try-except是否捕获到异常&#xff0c;finally子句后的代码都要执行&#xff0c;其语法格式如下&#xff1a; try: 可能出错的语句 ......except: 出错后的执行语句finally: 无论是否出错都会执行的语句 Python在处理文件时&…

Numpy入门教程:练习作业02

背景 什么是 NumPy 呢&#xff1f; NumPy 这个词来源于两个单词 – Numerical和Python。其是一个功能强大的 Python 库&#xff0c;可以帮助程序员轻松地进行数值计算&#xff0c;通常应用于以下场景&#xff1a; 执行各种数学任务&#xff0c;如&#xff1a;数值积分、微分、…

PowerShell 导入 SQL Server 的 PS 模块

接触过UNIX或者Linux 的朋友都知道此类系统有着功能强大、无所不能的壳程序,称之为Shell。微软公司于2006年第四季度正式发布PowerShell&#xff0c;它的出现标志着, 微软公司向服务器领域迈出了重要的一步, 不仅提供简便的图形化操作界面&#xff0c;同时提供类似于Unix, Linu…

ARM嵌入式操作系统启动

任何一个操作系统的启动都至少关注两个方面&#xff1a;&#xff11;&#xff0c;程序运行栈的初始化。&#xff12;&#xff0c;处理器外设的初始化。 在&#xff21;&#xff32;&#xff2d;&#xff56;&#xff16;以及以前的体系结构中&#xff0c;定义了七种模式分别为&…

Html5 aside标签的用法和作用

aside元素用来定义当前页面或者文章的附属信息部分&#xff0c;它可以包含与当前页面或主要内容相关的引用、侧边栏、广告、导航条等其他类似的有别于主要内容的部分。 aside元素的用法主要分为两种。 ● 被包含在article元素内作为主要内容的附属信息。 ● 在article元素之外使…