当前位置: 首页 > 编程日记 > 正文

My deep learning reading list

My deep learning reading list

主要是顺着Bengio的PAMI review的文章找出来的。包括几本综述文章,将近100篇论文,各位山头们的Presentation。全部都可以在google上找到。
BTW:由于我对视觉尤其是检测识别比较感兴趣,所以关于DL的应用主要都是跟Vision相关的。在其他方面比如语音或者NLP,很少或者几乎没有。个人非常看好CNN和Sparse Autoencoder,这个list也反映了我的偏好,仅供参考。

Review Book List:

[2009 Thesis] Learning Deep Generative Models.pdf
[2009] Learning Deep Architectures for AI.pdf
[2013 DengLi Review] Deep Learning for Signal and Information Processing.pdf
http://deeplearning.net/tutorial/deeplearning.pdf

Paper List:
[1996 Nature] sparse coding.pdf
[1997 Vision] Sparse coding with an overcomplete basis set.pdf
[1998 NIPS] EM Algorithms for PCA and SPCA.pdf
[1998 PIEEE] Gradient-Based Learning Applied to Document Recognition.pdf
[1999] Probabilistic Principal Component Analysis.pdf
[2002 NC] Training Products of Experts by Minimizing Contrastive Divergence.pdf
[2005 JMLR] Estimation of non-normalized statistical models by score matching.pdf
[2006 NC] A fast learning algorithm for deep belief nets.pdf
[2006 NIPS] Efficient Learning of Sparse Representations with an Energy-Based Model.pdf
[2006 NIPS] Efficient sparse coding algorithms.pdf
[2006 Science] Reducing the Dimensionality of Data with Neural Networks.pdf
[2006] A Tutorial on Energy-Based Learning.pdf
[2006] To Recognize Shapes, First Learn to Generate Images montrealTR.pdf
[2007 BOOK] Scaling Learning Algorithms towards AI.pdf
[2007 CVPR] Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object Recognition.pdf
[2007 ICML] Self-taught learning transfer learning from unlabeled data.pdf
[2007 NIPS TR] Greedy Layer-Wise Training of Deep Networks.pdf
[2007 NIPS] Sparse deep belief net model for visual area V2.pdf
[2007 NIPS] Sparse Feature Learning for Deep Belief Networks.pdf
[2007] Energy-Based Models in Document Recognition and Computer Vision.pdf
[2008 ICML] Extracting and Composing Robust Features with Denoising Autoencoders.pdf
[2008 ICML] Training restricted Boltzmann machines using approximations to the likelihood gradient.pdf
[2008 PSD] Fast Inference in Sparse Coding Algorithms with Applications to Object Recognition.pdf
[2009 AISTATS] Deep Boltzmann Machines.pdf
[2009 CVPR] Learning invariant features through topographic filter maps.pdf
[2009 CVPR] Linear Spatial Pyramid Matching Using Sparse Coding for Image Classification.pdf
[2009 ICCV] What is the Best Multi-Stage Architecture for Object Recognition.pdf
[2009 ICML] Using Fast Weights to Improve Persistent Contrastive Divergence.pdf
[2009 JMLR] Exploring Strategies for Training Deep Neural Networks.pdf
[2009 NIPS] Nonlinear Learning using Local Coordinate Coding.pdf
[2010 AISTATS] Efficient Learning of Deep Boltzmann Machines.pdf
[2010 AISTATS] On the convergence properties of contrastive divergence.pdf
[2010 CVPR] Learning Mid-Level Features For Recognition.pdf
[2010 CVPR] Locality-constrained Linear Coding for Image Classification.pdf
[2010 CVPR] Modeling Pixel Means and Covariances Using Factorized Third-Order Boltzmann Machines.pdf
[2010 ECCV] Image classification using super-vector coding of local image descriptors.pdf
[2010 ICML] A Theoretical Analysis of Feature Pooling in Visual Recognition.pdf
[2010 ICML] Deep learning via Hessian-free optimization.pdf
[2010 ICML] Learning Deep Boltzmann Machines using Adaptive MCMC.pdf
[2010 ISCAS] Convolutional Networks and Applications in Vision.pdf
[2010 JMLR] Stacked Denoising Autoencoders Learning Useful Representations.pdf
[2010 JMLR] Why Does Unsupervised Pre-training Help Deep Learning.pdf
[2010 NIPS] Learning Convolutional Feature Hierarchies for Visual Recognition.pdf
[2010 NIPS] Regularized estimation of image statistics by Score Matching.pdf
[2011 CACM] Unsupervised Learning of Hierarchical Representations with Convolutional Deep Belief Networks.pdf
[2011 CVPR] Learning image representations from the pixel level via hierarchical sparse coding.pdf
[2011 ICCV] Adaptive Deconvolutional Networks for Mid and High Level Feature Learning.pdf
[2011 ICML] Contractive Auto-Encoders.pdf
[2011 ICML] Learning Deep Energy Models.pdf
[2011 ICML] On Autoencoders and Score Matching for Energy Based Models.pdf
[2011 ICML] On optimization methods for deep learning.pdf
[2011 ICML] Unsupervised Models of Images by Spike-and-Slab RBMs.pdf
[2011 JMLR] Unsupervised and transfer learning challenge a deep learning approach.pdf
[2011 NC] A Connection Between Score Matching and Denoising Autoencoders.pdf
[2011 NIPS] Algorithms for Hyper-Parameter Optimization.pdf
[2011 NIPS] Spike-and-Slab Sparse Coding for Unsupervised Feature Discovery.pdf
[2011 UAI] Asymptotic efficiency of deterministic estimators for discrete energy-based models Ratio matching and pseudolikelihood.pdf
[2011] On the Expressive Power of Deep Architectures.pdf
[2012 Book] A Practical Guide to Training Restricted Boltzmann Machines.pdf
[2012 Dropout] Improving neural networks by preventing co-adaptation of feature detectors.pdf
[2012 ICML] A Generative Process for Sampling Contractive Auto-Encoders.pdf
[2012 ICML] Building High-level Features Using Large Scale Unsupervised Learning.pdf
[2012 ICML] Large-Scale Feature Learning With Spike-and-Slab Sparse Coding.pdf
[2012 JMLR] Random Search for Hyper-Parameter Optimization.pdf
[2012 NC] An Efficient Learning Procedure for Deep Boltzmann Machines.pdf
[2012 NIPS] A Better Way to Pre-Train Deep Boltzmann Machines.pdf
[2012 NIPS] Discriminative Learning of Sum-Product Networks.pdf
[2012 NIPS] ImageNet Classification with Deep Convolutional Neural Networks.pdf
[2012 NIPS] Practical Bayesian Optimization of Machine Learning Algorithms.pdf
[2012] Deep Learning via Semi-Supervised Embedding.pdf
[2013 BOOK] Deep Learning of Representations.pdf
[2013 ICLR] Stochastic Pooling for Regularization of Deep Convolutional Neural Networks.pdf
[2013 ICLR] What Regularized Auto-Encoders Learn from the Data Generating Distribution.pdf
[2013 ICML] Better Mixing via Deep Representations.pdf
[2013 ICML] No more pesky learning rates.pdf
[2013 ICML] On autoencoder scoring.pdf
[2013 ICML] On the importance of initialization and momentum in deep learning.pdf
[2013 ICML] Regularization of Neural Networks using DropConnect.pdf
[2013 NIPS] Adaptive dropout for training deep neural networks.pdf
[2013 NIPS] Deep Fisher Networks for Large-Scale Image Classification.pdf
[2013 NIPS] Deep Neural Networks for Object Detection.pdf
[2013 NIPS] Dropout Training as Adaptive Regularization.pdf
[2013 NIPS] Generalized Denoising Auto-Encoders as Generative Models.pdf
[2013 NIPS] Learning a Deep Compact Image Representation for Visual Tracking.pdf
[2013 NIPS] Learning Multi-level Sparse Representations.pdf
[2013 NIPS] Understanding Dropout.pdf
[2013 PAMI] Deep Hierarchies in the Primate Visual Cortex What Can We Learn For Computer Vision.pdf
[2013 PAMI] Deep Learning with Hierarchical Convolutional Factor Analysis.pdf
[2013 PAMI] Invariant Scattering Convolution Networks.pdf
[2013 PAMI] Learning Hierarchical Features for Scene Labeling.pdf
[2013 PAMI] Learning with Hierarchical-Deep Models.pdf
[2013 PAMI] Representation Learning A Review and New Perspectives.pdf
[2013 PAMI] Scaling Up Spike-and-Slab Models for Unsupervised Feature Learning.pdf
[2013 TR] Maxout networks.pdf
[2013 TR] Practical recommendations for gradient-based training of deep architectures.pdf
[2013] Network in Network.pdf
[2013] Visualizing and Understanding Convolutional Networks.pdf

Presentation List:
2007 Deep Belief Nets by hinton on nips2007.pdf
2009 Learning Deep Architectures by Yoshua Bengio.pdf
2010 Tutorial on Deep Learning and Applications by Honglak Lee on nips2010 workshop.pdf
2010 Unsupervised Learning by ranzato on nips2010 workshop.pdf
2012 A Tutorial on Deep Learning by yukai.pdf
2012 Deep Learning Methods for Vision on cvpr2012.pdf
2013 Deep Learning for Computer Vision by Rob Fergus on icml2013.pdf
2013 Deep Learning for Vision Tricks of the Trade by ranzato on bavm2013.pdf
2013 Deep Learning of Representations by Yoshua Bengio on aaai2013.pdf
2013 Deep Learning of Representations by Yoshua Bengio on sstic2013.pdf
2013 Deep Learning Tutorial by  lecun && ranzato on icml2013.pdf
2013 Large-Scale Visual Recognition With Deep Learning by ranzato on cvpr2013.pdf
2013 Recent Advances in Deep Learning by Kevin Duh.pdf
2013 Recent Developments in Deep Neural Networks by hinton on icassp2013.pdf
DeepLearning_SummerSchool\2012 Advanced Hierarchical Models by Salakhutdinov on ipam2012.pdf
DeepLearning_SummerSchool\2012 An Algebraic Perspective on Deep Learning on ipam2012.pdf
DeepLearning_SummerSchool\2012 An Informal Mathematical Tour of Feature Learning on ipam2012.pdf
DeepLearning_SummerSchool\2012 Deep Gated MRF's on ipam2012.pdf
DeepLearning_SummerSchool\2012 Deep Learning & Feature Learning Methods for Vision on ipam2012.pdf
DeepLearning_SummerSchool\2012 Deep learning in the visual cortex on ipam2012.pdf
DeepLearning_SummerSchool\2012 Deep Learning Tutorial by hinton on ipam2012.pdf
DeepLearning_SummerSchool\2012 Deep Learning, Graphical Models, EnergyBased Models, Structured Prediction by LeCun on ipam2012.pdf
DeepLearning_SummerSchool\2012 From natural scene statistics to models of neural coding and representation on ipam2012.pdf
DeepLearning_SummerSchool\2012 Introduction to MCMC for Deep Learning on ipam 2012.pdf
DeepLearning_SummerSchool\2012 Large-Scale Deep Learning on ipam2012.pdf
DeepLearning_SummerSchool\2012 Learning Hierarchical Generative Models on ipam2012.pdf
DeepLearning_SummerSchool\2012 Learning Hierarchies of Invariant Features by LeCun on ipam 2012.pdf
DeepLearning_SummerSchool\2012 Machine Learning and AI via Brain simulations by Andrew Ng on ipam2012.pdf
DeepLearning_SummerSchool\2012 Multiview Feature Learning on ipam2012.pdf
DeepLearning_SummerSchool\2012 Neural Networks Representation Non-linear hypotheses on ipam2012.pdf
DeepLearning_SummerSchool\2012 Scattering Invariant Deep Networks for Classification by Mallat on ipam2012.pdf

相关文章:

QT串口调试软件

QT串口调试软件软件主界面设置界面关于我们使用介绍软件主界面 本界面主要包括串口设置部分、数据接收部分、数据发送部分以及软件配置部分构成,软件主界面如图1所示。 在图1软件主界面中,位于左侧部分数据数据连接部分,主要功能是与无人机…

Unity提高工作效率的终极指南

本套课程指南通过关于如何更快、更智能地工作的最新技术,帮助Unity创作者节省时间并提高工作效率 你会学到: Unity的创建者节省了时间,提高了生产力。 关于如何更快地使用程序员和艺术家工具集的技巧,无论是个人还是团队。 Unity应该是一种快…

deepin tim(wine)无法安装_利用HyperV虚拟机,如何在Win10上安装Deepin国产操作系统?深度好文!...

随着老美对华为手机业务的封锁,在PC端的操作系统的未来也逐渐引起了人们的重视,一旦Windows停止向国内供应的话,对国内市场的冲击也是不小的。基于这个原因,国产操作系统也越来越频繁地进入大家的视野。在众多国产操作系统中&…

**使用 Git Hook 实现网站的自动部署

http://www.tuicool.com/articles/3QRB7jU 自动化能解放人类的双手,而且更重要的是,因为按照规定的流程来走,也减少了很多误操作的产生。不知道大家平时都是怎么样更新自己生产环境的代码的,FTP 覆盖旧文件、服务器定时任务去 bui…

Mavlink自定义协议

参照本人博客:博客直达 浏览密码:N414 这里不做描述,详细过程请移步本人博客

UE建筑可视化全局照明学习 Unreal Engine: Global Illumination for Arch. Visualization

虚幻引擎:建筑可视化的全局照明 你会学到: 使用轻量级地理信息引擎 聚焦胃肠计算 生成灯光贴图Uv 轻度烘焙 控制光反弹 使用环境遮挡 动画和地理信息 暴露 保存高分辨率图像 课程获取:UE建筑可视化全局照明学习-云桥网 时长:1h 30m |视频:. MP4,12807…

dbf如何导入oracle_「赵强老师」第一个Oracle的手工管理的备份和恢复

一、什么是手工管理的备份与恢复?尽管在Oracle中,已经有了RMAN的备份与恢复。但是作为Oracle备份恢复的一种方式,我们将在本文中通过一个例子来为大家介绍如何使用手工的方式来完成Oracle的备份与恢复。手工方式的本质是通过操作系统的cp命令…

大小端存储模式的理解和判断

在计算机系统中,存储是以字节为单位的,每个地址单元都对应着一个字节,一个字节8bit。在C语言中除了8bit的char之外,还有16bit的short型,32bit的long型(要看具体的编译器)。对于位数大于8位的处理…

汇编语言学习随笔

1.可执行文件中包含两部分内容: *程序(从源程序中的汇编指令翻译过来的机器码)和数据(源程序中定义的数据) *相关的描述信息(比如程序有多大,占多少内存空间啊等等) 2.segment和ends…

新装Ubuntu18.04系统配置PX4环境

1.安装QGC地面站系统:链接:https://docs.qgroundcontrol.com/master/en/getting_started/download_and_install.html 2.配置系统文件:下载PX4代码 -->打开代码 -->找到文件夹Tools文件 -->找到setup文件夹 -->找到ubuntu.sh文件&…

Blender程序性纹理学习教程大师班 Creative Shrimp – Procedural Texturing Blender Master Class

标题:创意虾-程序纹理Blender大师班 信息: 什么是程序纹理? 程序纹理将简单的数学转换为无限的真实感着色器,具有无限的多样性和分辨率。 超越看起来像一团像素特写的图像纹理,运用程序纹理的力量,清晰的细节和没有重复的模式。 你…

java 全局变量 内存不回收_Java的内存 - 内存回收

这篇承接上一篇 《Java的内存 - 内存模型》,分析内存回收相关的知识点。 垃圾回收包含两个步骤,①标记哪些内存是垃圾 ②回收内存。下面分别说这两个步骤有哪些算法:1. 垃圾标记1.1 引用计数算法没有哪一种 JVM 是使用「引用计数」作为垃圾回…

题目1000:计算a+b

题目描述&#xff1a;求整数a&#xff0c;b的和。 输入&#xff1a;测试案例有多行&#xff0c;每行为a&#xff0c;b的值。 输出&#xff1a;输出多行&#xff0c;对应ab的结果。 样例输入&#xff1a;1 2 4 5 6 9 样例输出&#xff1a;3 9 15 #include<iostream> using…

Mac下chrome的webapp hostadmin 快速切换host

首先是安装 app &#xff0c;https://chrome.google.com/webstore/detail/hostadmin-app/mfoaclfeiefiehgaojbmncmefhdnikeg Chrome把扩展的NPAPI 禁用了&#xff0c;所以做成APP没以前方便了&#xff0c;但是有总比没有好。 安装之后发现mac下选择host文件没法选&#xff0c;因…

PX4如何开启本地在环仿真?如何将仿真地点定位为本地位置?你进来就对了!

视频预览&#xff1a;3架无人机在环仿真 3架仿真jmavsim本地坐标启动教程 1.首先执行仿真命令 n414414:~/001/Firmware$ make px4_sitl_default jmavsim出现左边界面就说明该仿真是可以进行仿真的&#xff01;由于我在自己写的代码里面启动&#xff0c;所以出现右边提示&…

Blender从头到尾创建低多边形角色学习教程 Low Poly Characters – Blender Bitesize Course

从头到尾创建低多边形角色。 你会学到: Blender界面的基础。 基本建模技术。 如何遵循字符引用&#xff1f; 如何创造和塑造自己的角色(不同风格、发型和服装)。 纹理字符。 索具和动画介绍(用于你的游戏引擎或动画)。 调整您下载的资产包角色&#xff0c;以创建新的不同角色。…

20145101《Java程序设计》第4周学习总结

20145101《Java程序设计》第4周学习总结 教材学习内容总结 第六章 继承与多态 继承&#xff1a;避免多个类间重复定义共同行为。把相同代码提升为父类 运用extends关键字的子类会继承扩充父类行为 多个类中存在相同属性和行为时&#xff0c;将这些内容抽取到单独一个类中&#…

反编译使用yield关键字的方法

我认为这是一个真命题&#xff1a;“没有用.NET Reflector反编译并阅读过代码的程序员不是专业的.NET程序员”。.NET Reflector强大的地方就在于可以把IL代码反编译成可读性颇高的高级语言代码&#xff0c;并且能够支持相当多的“模式”&#xff0c;根据这些模式它可以在一定程…

Android studio 启动自学模式

今天在网上看到了编译Android的软件Android studio&#xff0c;出于对Android的学习兴趣&#xff0c;我打算开始新一轮的Android的学习。今天就是在网上&#xff0c;以及图书馆里查找了有关Android studio的书籍&#xff0c;但是由于Android是在13年才开始发布的原因吧&#x…

AutoCAD 2D与3D大师班学习教程 AutoCAD 2D and 3D Masterclass

用实例和解决问题的方法完成从基础到专业的AutoCAD课程。 你会学到什么 AutoCAD课程包含创建计划和模型的命令和不同方法的详细使用。 本课程包括对AutoCAD中使用的所有命令和工具的详细解释。 课程内容是按时间顺序设计的&#xff0c;以了解承担项目的实际方法。 本课程包含两…

威纶通宏开机后使用初始化宏指令_【操作系统】我们按下电脑开机键的背后发生了什么?...

作者&#xff1a;CVNot链接&#xff1a;https://juejin.im/post/5e8844996fb9a03c6675b9d6操作系统是什么&#xff1f;操作系统是用来管理计算机硬件的软件&#xff0c;狭义上实现该定义的为操作系统内核&#xff1b;而更加宽泛的操作系统概念为根据内核对外提供了一些OS服务&a…

Linux常用压缩与解压缩命令

.tar 解包&#xff1a;tar xvf FileName.tar打包&#xff1a;tar cvf FileName.tar DirName&#xff08;注&#xff1a;tar是打包&#xff0c;不是压缩&#xff01;&#xff09;———————————————.gz解压1&#xff1a;gunzip FileName.gz解压2&#xff1a;gzip -d…

【Kubernetes】如何使用Kubeadm部署K8S集群

一 . 准备机器 本次环境采用华为云ECS弹性云服务器部署&#xff08;也可以使用VMware&#xff09; vm01&#xff08;2V4G&#xff09;&#xff1a; Ubuntu_18.04作为K8S master节点 vm02&#xff08;1V1G&#xff09;&#xff1a; Ubuntu_18.04作为K8S node节点 备注: 以下所有…

解决ORA-28000: the account is locked

在oracle中&#xff0c;连续十次尝试登陆不成功&#xff0c;那么此账户将会被锁定&#xff08;lock&#xff09;。当使用被锁定的账户登录时&#xff0c;系统会报错&#xff1a;ORA-28000: the account is locked。查询FAILED_LOGIN_ATTEMPTS参数默认值&#xff0c;这个参数限制…

Android sudio Day01-1

今天我开始学习Android studio的第二天&#xff0c;主题是Android studio的安装。 之前的学校学习都是使用Android开发者工具&#xff08;Android development tools&#xff0c;ADT&#xff09;&#xff0c;而ADT作为一个Android开发工具&#xff0c;它是通过内置于Eclipse的…

学习用C#在Unity中创建一个2D Metroidvania游戏

学习用C#在Unity中创建一个2D Metroidvania游戏 你会学到: 构建2D Unity游戏 用C#编程 玩家统计&#xff0c;水平提升&#xff0c;米尔和远程攻击 敌方人工智能系统 制定级别和级别选择 Learn To Create A 2D Metroidvania Game in Unity With C# MP4 |视频:h264&#xff0c;…

3.27课·········悬浮动态分层导航与隐藏导航

例1:分层导航 <title>分层导航</title> <script src"../JavaScript/jquery-1.4.2.min.js">//引用外部JS代码 </script> <style> #apDiv1 {position: fixed;left: auto;top: auto;bottom: auto;width: 237px;height: auto;z-index: 2;m…

.sh是什么语言_shell的重生历史:从sh到bash

shell 门派之争Linux 中的 shell 有很多类型&#xff0c;其中最常用的几种是&#xff1a;Bourne shell (sh)、C shell (csh) 和 Korn shell (ksh)&#xff0c;它们各有优缺点&#xff0c;用户则萝卜青菜&#xff0c;各有所爱。Bourne shell 出师不利Bash&#xff1a;Bourne aga…

【Docker】容器的几种网络模式

当你使用Docker时&#xff0c;你会发现需要了解很多关于网络的知识。Docker作为目前最火的轻量级容器引擎&#xff0c;因此&#xff0c;我们有必要深入了解Docker的网络知识&#xff0c;以满足更高的网络需求。本文介绍了Docker的4种网络模式。 1、首先我们先简单描述一下容器…

微信推送模板消息的PHP代码整理

本文为本人原创&#xff0c;未经许可&#xff0c;不可转载。 博主长期从事微信开发&#xff0c;微信开发相关问题和业务请联系qq 2580234897 最近做过一个需要推送消息的系统&#xff0c;就研究了一下微信的模板消息的推送。由于认证过的微信号&#xff0c;就用测试号做的&…