当前位置: 首页 > 编程日记 > 正文

深度学习 免费课程_深入学习深度学习,提供15项免费在线课程

深度学习 免费课程

by David Venturi

大卫·文图里(David Venturi)

深入学习深度学习,提供15项免费在线课程 (Dive into Deep Learning with 15 free online courses)

Every day brings new headlines for how deep learning is changing the world around us. A few examples:

每天都有新的标题报道深度学习如何改变我们周围的世界。 一些例子:

  • Deep learning algorithm diagnoses skin cancer as well as seasoned dermatologists

    深度学习算法可诊断皮肤癌以及经验丰富的皮肤科医生

  • Amazon Go: How Deep Learning and AI will change Retailing

    Amazon Go:深度学习和人工智能将如何改变零售

  • Deep Learning Makes Driverless Cars Better at Spotting Pedestrians

    深度学习使无人驾驶汽车更适合发现行人

Want to see what the fuss is all about? Looking to master the technical content to advance your career or start your own company? I explored the open source project Class Central and found 31 online courses (15 of which are completely free) that cover everything from the basics of deep learning to the most cutting edge research today.

想看看大惊小怪吗? 想要掌握技术内容以发展您的职业或创办自己的公司? 我浏览了开源项目Class Central ,发现了31个在线课程(其中15个是完全免费的),涵盖了从深度学习的基础到当今最前沿的研究的所有内容。

Before we start, you may be asking yourself: “What exactly is deep learning?” Here’s a succinct description:

在开始之前,您可能会问自己:“深度学习到底是什么?” 这是一个简洁的描述:

“Deep learning is a subfield of machine learning concerned with algorithms inspired by the structure and function of the brain called artificial neural networks.”
“深度学习是机器学习的一个子领域,涉及受大脑结构和功能启发的算法,称为人工神经网络。”

— Jason Brownlee from Machine Learning Mastery

—来自机器学习精通的 Jason Brownlee

Without further ado…

无需再费周折…

在线深度学习课程 (Online Deep Learning Courses)

Creative Applications of Deep Learning with TensorFlowvia Kadenze★★★★★ (14 ratings)

通过Kadenze 使用TensorFlow 进行 深度学习的创造性应用 ★★★★★( 14个评分 )

We cover the basic components of deep learning, what it means, how it works, and develop code necessary to build various algorithms such as deep convolutional networks, variational autoencoders, generative adversarial networks, and recurrent neural networks. A major focus of this course will be to not only understand how to build the necessary components of these algorithms, but also how to apply them for exploring creative applications. Free and paid options are available.

我们涵盖了深度学习的基本组成部分,它的含义,工作方式,并开发了构建各种算法(例如深度卷积网络,变分自动编码器,生成对抗网络和递归神经网络)所需的代码。 本课程的主要重点不仅在于了解如何构建这些算法的必要组件,还在于如何将其应用于探索创造性的应用程序。 提供免费和付费选项。

Prominent review (by Christopher Kelly): “I have an undergraduate degree in computer science … I’ve spent a ton of time on Khan Academy and Coursera and I’m blown away by the quality and professionalism of the content of this course. Highly recommended!”

杰出的评论( 克里斯托弗·凯利 ( Christopher Kelly )): “我拥有计算机科学的本科学位……我在可汗学院和Coursera上度过了很多时间,并且对这门课程的内容的质量和专业性感到震惊。 强烈推荐!”

Neural Networks for Machine LearningUniversity of Toronto via Coursera★★★★★ (18 ratings)

多伦多大学 机器学习的神经网络, 通过Coursera ★★★★★( 18个评分 )

Learn about artificial neural networks and how they’re being used for machine learning, as applied to speech and object recognition, image segmentation, modeling language and human motion, etc. We’ll emphasize both the basic algorithms and the practical tricks needed to get them to work well. Free and paid options are available.

了解有关人工神经网络及其在机器学习中如何用于语音和对象识别,图像分割,建模语言和人体运动等的知识。我们将重点介绍获得所需的基本算法和实用技巧他们工作得很好。 提供免费和付费选项。

Prominent review (by Bobby Brady): “This is one of those chance in a lifetime courses you have to get to learn from the greats. Geoffrey Hinton was one of the most important and influential researchers to work on artificial intelligence and neural nets back in the 80’s. Currently he is working with Google in their AI/deep learning initiatives.”

杰出的评论(由Bobby Brady撰写 ):“ 这是一生中必须向伟大的人学习的机会之一。 杰弗里·欣顿(Geoffrey Hinton)是80年代从事人工智能和神经网络研究的最重要和最有影响力的研究人员之一。 目前,他正在与Google合作开展AI /深度学习计划。”

Practical Deep Learning For Coders, Part 1fast.ai★★★★☆ (3 ratings)

面向程序员的 实用深度学习,第1部分 fast.ai ★★★★☆( 3评分 )

This 7-week course is designed for anyone with at least a year of coding experience, and some memory of high-school math. You will start with step one — learning how to get a GPU server online suitable for deep learning — and go all the way through to creating state of the art, highly practical, models for computer vision, natural language processing, and recommendation systems. Free.

这项为期7周的课程是为至少具有一年编码经验并且对高中数学有一定记忆的人设计的。 您将从第一步开始-学习如何在线获得适用于深度学习的GPU服务器-并一直创建最先进的,高度实用的计算机视觉模型,自然语言处理和推荐系统。 自由。

Prominent review (by Anonymous): “This is really a hidden gem in a field that rapidly growing. Jeremy Howard does an excellent job of both walking through the basics and presenting state of the art results. I was surprised time and again when not only was he presenting material developed within the last year, but even within the week the course was running … You practice on real life data through Kaggle competitions. I would strongly recommend this course to anyone looking to go from zero real world experience to competing with experts in the field.”

杰出评论( 匿名人士 ): “这确实是一个Swift发展的领域中的隐藏宝石。 杰里米·霍华德(Jeremy Howard)出色地完成了基础知识并展示了最新技术成果。 我一次又一次地感到惊讶,他不仅介绍了去年开发的材料,甚至还介绍了课程运行的一周之内……您通过Kaggle竞赛练习现实数据。 我强烈建议向希望从零现实世界经验转变为与该领域的专家竞争的任何人使用此课程。”

6.S191: Introduction to Deep LearningMassachusetts Institute of Technology (MIT)★★★★☆ (1 rating)

6.S191: 麻省理工学院(MIT) 深度学习简介 ★★★★☆( 1评分 )

A week-long intro to deep learning methods with applications to machine translation, image recognition, game playing, image generation and more. A collaborative course incorporating labs in TensorFlow and peer brainstorming along with lectures. Free.

为期一周的深度学习方法入门,涉及机器翻译,图像识别,游戏,图像生成等方面的应用。 包含TensorFlow中的实验室和同行集体讨论以及讲座的协作课程。 自由。

6.S094: Deep Learning for Self-Driving CarsMassachusetts Institute of Technology (MIT)★★★★☆ (1 rating)

6.S094:自动驾驶汽车的深度学习 麻省理工学院(MIT) ★★★★☆( 1评分 )

This class is an introduction to the practice of deep learning through the applied theme of building a self-driving car. It is open to beginners and is designed for those who are new to machine learning, but it can also benefit advanced researchers in the field looking for a practical overview of deep learning methods and their application. Free.

本课程通过构建自动驾驶汽车的应用主题介绍深度学习的实践。 它对初学者开放,并且是为机器学习的新手而设计的,但它也可以为寻求深度学习方法及其应用的实用概述的本领域的高级研究人员提供帮助。 自由。

Deep LearningGoogle via Udacity★★☆☆☆ (20 ratings)

通过Udacity 深度学习 Google ★★☆☆☆( 20评分 )

In this course, you’ll develop a clear understanding of the motivation for deep learning, and design intelligent systems that learn from complex and/or large-scale datasets. You will learn to solve new classes of problems that were once thought prohibitively challenging, and come to better appreciate the complex nature of human intelligence as you solve these same problems effortlessly using deep learning methods. Free.

在本课程中,您将清楚了解深度学习的动机,并设计可从复杂和/或大规模数据集中学习的智能系统。 您将学习解决曾经被认为极具挑战性的新问题类别,并在使用深度学习方法轻松解决这些相同问题的同时,更好地理解人类智能的复杂性。 自由。

Deep Learning for Natural Language ProcessingUniversity of Oxford

牛津大学 自然语言处理深度学习

This is an applied course focusing on recent advances in analyzing and generating speech and text using recurrent neural networks. The mathematical definitions of the relevant machine learning models are introduced and their associated optimization algorithms are derived.

这是一门应用课程,着重于使用递归神经网络分析和生成语音和文本的最新进展。 介绍了相关机器学习模型的数学定义,并推导了它们的相关优化算法。

The course, which is free, is lead by Phil Blunsom and delivered in partnership with the DeepMind Natural Language Research Group.

该课程是免费的,由Phil Blunsom主持 ,并与DeepMind自然语言研究小组合作提供。

CS224n: Natural Language Processing with Deep LearningStanford University

CS224n: 斯坦福大学 深度学习的自然语言处理

The course provides a thorough introduction to cutting-edge research in deep learning applied to NLP. On the model side we will cover word vector representations, window-based neural networks, recurrent neural networks, long-short-term-memory models, recursive neural networks, convolutional neural networks as well as some recent models involving a memory component. Through lectures (note: Winter 2017 videos now posted) and programming assignments students will learn the necessary engineering tricks for making neural networks work on practical problems. Free.

该课程全面介绍了应用于NLP的深度学习前沿研究。 在模型方面,我们将涵盖词向量表示,基于窗口的神经网络,递归神经网络,长期短期记忆模型,递归神经网络,卷积神经网络以及一些涉及内存组件的最新模型。 通过讲座 ( 请注意:现已发布2017年冬季视频 )和编程任务,学生将学习使神经网络解决实际问题的必要工程技巧。 自由。

CS231n: Convolutional Neural Networks for Visual RecognitionStanford University

CS231n:用于视觉识别的卷积神经网络 斯坦福大学

This course is a deep dive into details of the deep learning architectures with a focus on learning end-to-end models for these tasks, particularly image classification. During the 10-week course, students will learn to implement, train and debug their own neural networks and gain a detailed understanding of cutting-edge research in computer vision. The final assignment will involve training a multi-million parameter convolutional neural network and applying it on the largest image classification dataset (ImageNet). We will focus on teaching how to set up the problem of image recognition, the learning algorithms (e.g. backpropagation), practical engineering tricks for training and fine-tuning the networks and guide the students through hands-on assignments and a final course project. Free.

本课程深入研究了深度学习架构的细节,重点是学习这些任务的端到端模型,尤其是图像分类。 在为期10周的课程中,学生将学习实现,训练和调试自己的神经网络,并获得对计算机视觉前沿研究的详细了解。 最后的任务将涉及训练数百万个参数的卷积神经网络,并将其应用于最大的图像分类数据集(ImageNet)。 我们将重点讲授如何设置图像识别问题,学习算法(例如,反向传播),用于训练和微调网络的实用工程技巧,并通过动手作业和最终课程项目指导学生。 自由。

Machine LearningNando de Freitas/University of British Columbia

机器学习 Nando de Freitas /不列颠哥伦比亚大学

This course focuses on the exciting field of deep learning. By drawing inspiration from neuroscience and statistics, it introduces the basic background on neural networks, back propagation, Boltzmann machines, autoencoders, convolutional neural networks and recurrent neural networks. It illustrates how deep learning is impacting our understanding of intelligence and contributing to the practical design of intelligent machines. Free.

本课程侧重于深度学习的令人兴奋的领域。 通过借鉴神经科学和统计学的启发,它介绍了神经网络,反向传播,玻尔兹曼机器,自动编码器,卷积神经网络和递归神经网络的基本背景。 它说明了深度学习如何影响我们对智能的理解并有助于智能机器的实际设计。 自由。

Deep Learning Summer School 2015 and 2016Various organizers (including Yoshua Bengio and Yann LeCun) via Independent

2015年 和2016年 深度学习暑期学校 通过独立组织 各种组织者(包括Yoshua Bengio和Yann LeCun)

Deep Learning Summer School is aimed at graduate students and industrial engineers and researchers who already have some basic knowledge of machine learning (and possibly but not necessarily of deep learning) and wish to learn more about this rapidly growing field of research.

深度学习暑期班针对的是研究生,工业工程师和研究人员,他们已经掌握了一些机器学习的基础知识(并且可能但不一定是深度学习的知识),并且希望进一步了解这一Swift发展的研究领域。

It isn’t organized like a traditional online course, but its organizers (including deep learning luminaries such as Bengio and LeCun) and the lecturers they attract make this series a gold mine for deep learning content. It is free.

它的组织方式不同于传统的在线课程,但其组织者(包括Bengio和LeCun等深度学习专家)及其吸引的讲师使该系列成为深度学习内容的金矿。 这是免费的。

Online Course on Neural NetworksHugo Larochelle/Université de Sherbrooke

神经网络在线课程 Hugo Larochelle /舍布鲁克大学

“Welcome to my online course on neural networks! I’ve put this course together while teaching an in-class version of it at the Université de Sherbrooke. This is a graduate-level course, which covers basic neural networks as well as more advanced topics.” Free.

“欢迎来到我的神经网络在线课程! 我在舍布鲁克大学(Universitéde Sherbrooke)讲授课程的同时,将这门课程放在一起。 这是一门研究生课程,涵盖基础神经网络以及更高级的主题。” 自由。

Learn TensorFlow and deep learning, without a Ph.D.Google

无需博士学位即可学习TensorFlow和深度学习。 谷歌

This three-hour course (video and slides) offers developers a quick introduction to deep-learning fundamentals, with some TensorFlow thrown into the bargain. Free.

这个为时三小时的课程(视频和幻灯片)为开发人员提供了深入学习基础知识的快速入门,其中一些TensorFlow也很便宜。 自由。

Deep Learning 101Big Data University

深度学习101 大数据大学

The further one dives into the ocean, the more unfamiliar the territory can become. Deep learning, at the surface might appear to share similarities. This course is designed to get you hooked on the nets and coders all while keeping the school together. Free.

越深入海洋,领土就会变得越陌生。 从表面上看,深度学习似乎具有相似之处。 本课程旨在使您与网络和编码员紧密相连,同时使学校保持在一起。 自由。

Deep Learning with TensorFlowBig Data University

TensorFlow 大数据大学的 深度学习

The majority of data in the world is unlabeled and unstructured. Shallow neural networks cannot easily capture relevant structure in, for instance, images, sound, and textual data. Deep networks are capable of discovering hidden structures within this type of data. In this TensorFlow course you’ll use Google’s library to apply deep learning to different data types in order to solve real world problems. Free.

世界上大多数数据都是未标记和未结构化的。 浅层神经网络无法轻松捕获图像,声音和文本数据等相关结构。 深度网络能够发现此类数据中的隐藏结构。 在本TensorFlow课程中,您将使用Google的库将深度学习应用于不同的数据类型,以解决现实世界中的问题。 自由。

Deep Learning in PythonDataCamp

Python DataCamp中的 深度学习

In this course, you’ll gain hands-on, practical knowledge of how to use neural networks and deep learning with Keras 2.0, the latest version of a cutting edge library for deep learning in Python. Partially free.

在本课程中,您将获得有关如何使用神经网络和深度学习与Keras 2.0进行动手实践的知识,Keras 2.0是Python深度学习的最新库的最新版本。 部分免费。

The following courses, sorted by rating, are all hosted on Udemy. Prices vary depending on Udemy discounts, which are frequent. You are often able to purchase access for as little as $10.

以下课程按评分排序,均在Udemy上托管。 价格根据Udemy的折扣而有所不同,这些折扣经常出现。 您通常可以以低至10美元的价格购买访问权限。

Please note that the offerings from Lazy Programmer Inc. come with a suggested order as per the “Useful Course Ordering” guideline in their course descriptions.

请注意,Lazy Programmer Inc.的产品在其课程说明中按照“有用的课程订购”指南提供了建议的订购。

Deep Learning A-Z™: Hands-On Artificial Neural NetworksKirill Eremenko and the SuperDataScience Team via Udemy4.7 stars (388 ratings)

深度学习AZ™:动手人工神经网络 Kirill Eremenko和SuperDataScience团队(通过Udemy) 4.7星级(388个评分)

Learn to create deep learning algorithms in Python from two machine learning and data science experts. Templates included. This course is taught by the same instructor that teaches my top recommendation for intro to data science courses.

向两位机器学习和数据科学专家学习使用Python创建深度学习算法。 包含模板。 本课程由同一位老师讲授,该老师教给我有关数据科学入门课程的最高推荐 。

I ranked every Intro to Data Science course on the internet, based on thousands of data pointsmedium.freecodecamp.com

我根据数千个数据点 medium.freecodecamp.com 对互联网上的每门数据科学入门课程进行了 排名。

Zero to Deep Learning™: Mastering KerasData Weekends, Jose Portilla, Francesco Mosconi4.8 stars (23 ratings)

零深度学习™:掌握Keras 数据周末,何塞·波蒂利亚,弗朗切斯科·莫斯科尼 4.8星级(23评分)

Understand and build Deep Learning models for images, text, sound and more using Python and Keras.

使用Python和Keras了解并构建用于图像,文本,声音等的深度学习模型。

Deep Learning Prerequisites: The Numpy Stack in PythonLazy Programmer Inc. via Udemy4.6 stars (1,551 ratings)

深度学习先决条件:Python Lazy Programmer Inc.中 的Numpy堆栈, 通过Udemy 4.6星级(1,551个评分)

The Numpy, Scipy, Pandas, and Matplotlib stack: prep for deep learning, machine learning, and artificial intelligence. Free.

Numpy,Scipy,Pandas和Matplotlib堆栈:为深度学习,机器学习和人工智能做准备。 自由。

Data Science: Deep Learning in PythonLazy Programmer Inc. via Udemy4.6 stars (1,381 ratings)

数据科学: 通过Udemy 在Python Lazy Programmer Inc.中进行 深度学习 4.6星级(1,381评分)

A guide for writing your own neural network in Python and Numpy, and how to do it in Google’s TensorFlow.

使用Python和Numpy编写自己的神经网络以及如何在Google的TensorFlow中进行操作的指南。

Deep Learning Prerequisites: Linear Regression in PythonLazy Programmer Inc. via Udemy4.6 stars (751 ratings)

深度学习先决条件:Python Lazy Programmer Inc.中的 线性回归, 通过Udemy 4.6星(751个评分)

Learn linear regression from scratch and build your own working program in Python for data analysis.

从零开始学习线性回归,并在Python中构建自己的工作程序进行数据分析。

Deep Learning Prerequisites: Logistic Regression in PythonLazy Programmer Inc. via Udemy4.6 stars (624 ratings)

深度学习先决条件:Python Lazy Programmer Inc.中的 逻辑回归 通过Udemy 4.6星级(624个评分)

Data science techniques for professionals and students — learn the theory behind logistic regression and code in Python.

适用于专业人士和学生的数据科学技术-学习逻辑回归和Python代码背后的理论。

Deep Learning: Convolutional Neural Networks in PythonLazy Programmer Inc. via Udemy4.6 stars (304 ratings)

深度学习:Python Lazy Programmer Inc.中的 卷积神经网络, 通过Udemy 4.6星(304评分)

This course is all about how to use deep learning for computer vision using convolutional neural networks. These are the state of the art when it comes to image classification and they beat vanilla deep networks at tasks like MNIST.

本课程全部关于如何使用卷积神经网络将深度学习用于计算机视觉。 这些是图像分类方面的最新技术,它们在诸如MNIST之类的任务中击败了香草深层网络。

Data Science: Practical Deep Learning in Theano + TensorFlowLazy Programmer Inc. via Udemy4.6 stars (293 ratings)

数据科学:Theano + TensorFlow Lazy Programmer Inc.中的 实用深度学习, 通过Udemy 4.6星级(293评分)

Take deep learning to the next level with SGD, Nesterov momentum, RMSprop, Theano, TensorFlow, and using the GPU on AWS.

通过SGD,Nesterov动量,RMSprop,Theano,TensorFlow以及在AWS上使用GPU,将深度学习提升到一个新的水平。

Deep Learning: Recurrent Neural Networks in PythonLazy Programmer Inc. via Udemy4.6 stars (248 ratings)

深度学习:Python Lazy Programmer Inc.中的 递归神经网络, 通过Udemy 4.6星级(248个评分)

GRU, LSTM, and more modern deep learning, machine learning, and data science for sequences.

GRU,LSTM,以及更现代的深度学习,机器学习和序列数据科学。

Natural Language Processing with Deep Learning in PythonLazy Programmer Inc. via Udemy4.6 stars (194 ratings)

通过Udemy 在Python Lazy Programmer Inc.中进行 深度学习的自然语言处理 4.6星级(194评分)

Complete guide on deriving and implementing word2vec, GLoVe, word embeddings, and sentiment analysis with recursive nets.

有关使用递归网络派生和实现word2vec,GLove,单词嵌入和情感分析的完整指南。

Unsupervised Deep Learning in PythonLazy Programmer Inc. via Udemy4.6 stars (153 ratings)

通过Udemy 在Python Lazy Programmer Inc.中进行的 无监督深度学习 4.6星级(153评分)

Autoencoders and Restricted Boltzmann Machines for Deep Neural Networks in Theano, and t-SNE and PCA.

Theano中的深层神经网络以及t-SNE和PCA的自动编码器和受限玻尔兹曼机。

Unleash Deep Learning: Begin Visually with Caffe and DIGITSRazvan Pistolea via Udemy4.5 stars (36 ratings)

释放深度学习: 通过Udemy通过 Caffe和DIGITS Razvan Pistolea 从视觉上开始 4.5星级(36评分)

An introduction to Deep Learning tools using Caffe and DIGITS where you get to create your own Deep Learning Model.

有关使用Caffe和DIGITS的深度学习工具的简介,您可以在其中创建自己的深度学习模型。

Deep Learning with TensorFlowPackt Publishing via Udemy3.9 stars (96 ratings)

使用TensorFlow Packt Publishing通过Udemy进行 深度学习 3.9星级(96评分)

Channel the power of deep learning with Google’s TensorFlow!

利用Google的TensorFlow传递深度学习的力量!

Deep Learning with PythonPackt Publishing via Udemy3.4 stars (31 ratings)

通过Udemy通过 Python Packt Publishing进行 深度学习 3.4星级(31评分)

Dive into the future of data science and implement intelligent systems using deep learning with Python.

深入研究数据科学的未来,并使用Python进行深度学习来实现智能系统。

Though it is more of a program than a singular online course, below you’ll find a Udacity Nanodegree targeting the fundamentals of deep learning.

尽管它不是单单的在线课程,它更像是一个程序,但在下面您会发现针对深度学习基础的Udacity纳米学位

At time of publishing, the current enrollment period is closed, but you can sign up for the waiting list to be notified when the next enrollment period begins.

发布时,当前的注册期已结束,但是您可以注册以等待下一个注册期开始时的通知。

Deep Learning Foundations NanodegreeSiraj Raval via Udacity

深度学习基金会 通过Udacity提供 纳米学位 Siraj Raval

Artificial Intelligence is transforming our world in dramatic and beneficial ways, and Deep Learning is powering the progress. Together with Siraj Raval, Udacity provides a dynamic introduction to this amazing field, using weekly videos, exclusive projects, and expert feedback and review to teach you the foundations of this future-shaping technology.

人工智能正在以戏剧性和有益的方式改变我们的世界,而深度学习正在推动进步。 Udacity与Siraj Raval一起,通过每周的视频,独家项目以及专家的反馈和评论为您提供了有关这一惊人领域的动态介绍,以教会您这种塑造未来技术的基础。

If you enjoyed reading this, check out some other explorations of Class Central’s dataset:

如果您喜欢阅读本文,请查看Class Central的数据集的其他一些探索:

  • Here are 250 Ivy League courses you can take online right now for free

    这里有250个常春藤盟军课程,您可以立即免费在线上报名

  • I ranked every Intro to Data Science course on the internet, based on thousands of data points

    我根据数千个数据点对互联网上的每门数据科学入门课程进行了排名

  • If you want to learn Data Science, start with one of these programming classes

    如果您想学习数据科学,请从以下编程课程之一开始

  • If you want to learn Data Science, take a few of these statistics classes

    如果您想学习数据科学,请参加一些此类统计课程

  • The best free online university courses for learning a new world language

    学习新世界语言的最佳免费在线大学课程

  • The 50 best free online university courses according to data

    根据数据显示的50种最佳免费在线大学课程

If you know of any courses that I may have missed, please let me know in the responses!

如果您知道我可能错过的任何课程,请在回复中告诉我!

If you found this helpful, click the ? so more people will see it here on Medium.

如果您认为这有帮助,请单击“?”。 因此更多的人会在Medium上看到它。

Originally published on Class Central.

最初发表在Class Central上 。

翻译自: https://www.freecodecamp.org/news/dive-into-deep-learning-with-these-23-online-courses-bf247d289cc0/

深度学习 免费课程

相关文章:

《音乐商店》第4集:自动生成StoreManager控制器

一、自动生成StoreManager控制器 二、查看 StoreManager 控制器的代码 现在,Store Manager 控制器中已经包含了一定数量的代码,我们从头到尾重新过一下。 1.访问数据库代码 首先,在控制器中包含了标准的 MVC 控制器的代码,为了使用…

StringUtils

/需要导入第三方jar包pinyin4j.jarimport net.sourceforge.pinyin4j.PinyinHelper;import java.util.regex.Matcher; import java.util.regex.Pattern;public class StringUtils {protected static final String TAG StringUtils.class.getSimpleName();/*** 增加空白*/public…

微信支付invalid total_fee 的报错

因为我的测试商品是0.01的 原因是微信支付的金额是不能带小数点的 直接在提交的时候 乘以 100操作 ,因为里面设置参数的时候是 以分为单位的 [packageParams setObject: price forKey:"total_fee"]; //订单金额,单位为分

帧编码 场编码_去年,我帮助举办了40场编码活动。 这是我学到的。

帧编码 场编码by Florin Nitu通过弗洛林尼图 去年,我帮助举办了40场编码活动。 这是我学到的。 (I helped host 40 coding events last year. Here’s what I learned.) Our local freeCodeCamp study group in Brasov, Romania just held its 40th event. We even…

HDU 4540 威威猫系列故事――打地鼠(DP)

D - 威威猫系列故事――打地鼠Time Limit:100MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Status Practice HDU 4540Description 威威猫最近不务正业,每天沉迷于游戏“打地鼠”。 每当朋友们劝他别太着迷游戏,应该好好工…

iOS 在每一个cell上添加一个定时器的方案

1 首先创建一个数组,用来创建所有的定时器的时间 - (NSMutableArray *)totalLastTime {if (!_totalLastTime) {_totalLastTime [NSMutableArray array];}return _totalLastTime; }2 当从网络请求过来时间之后,循环遍历,行数和时间作为Key&a…

用字符串生成二维码

需要导入Zxing.jar包import android.graphics.Bitmap;import com.google.zxing.BarcodeFormat; import com.google.zxing.MultiFormatWriter; import com.google.zxing.WriterException; import com.google.zxing.common.BitMatrix;public class ZxingCode {/** * 用字符串生成…

在JavaScript中重复字符串的三种方法

In this article, I’ll explain how to solve freeCodeCamp’s “Repeat a string repeat a string” challenge. This involves repeating a string a certain number of times.在本文中,我将解释如何解决freeCodeCamp的“ 重复字符串重复字符串 ”挑战。 这涉及重…

杭电2099 整除的尾数

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid2099 解题思路:将a扩大100倍之后,再给它从加上i(i从0到99),一个一个的看哪一个能整除 反思:末两位是00的时候输出的是00(这种情况题目里面的测试数据给…

iOS 验证码倒计时按钮

具体使用 [SmsTimerManager sharedManager].second (int)time; [[SmsTimerManager sharedManager] resetTime]; [SmsTimerManager sharedManager].delegate self; [strongSelf updateTime];设置代理方法 更新按钮的标题 (void)updateTime { if ([SmsTimerManager sharedMan…

树莓派centos安装的基本配置

萌新再发一帖,这篇文章呢主要是为大家在树莓派上安装centos以后提供一个问题的解决方案。 首先我呢觉得好奇就在某宝上花了两百来块钱买了一套树莓派,很多人喜欢在树莓派上安装Debian,我呢更青睐用Red Hat的系统,毕竟对Red Hat更熟…

token拦截器阻止连接_如何防止广告拦截器阻止您的分析数据

token拦截器阻止连接TL;DR Theres dataunlocker.com service coming soon (subscribe!), along with the open-sourced prototype you can use for Google Analytics or Google Tag Manager (2020 update).TL; DR即将推出dataunlocker.com服务 (订阅!),以…

使用Fiddler手机抓包https-----重要

Fiddler不仅可以对手机进行抓包,还可以抓取别的电脑的请求包,今天就想讲一讲使用Fiddler手机抓包! 使用Fiddler手机抓包有两个条件: 一:手机连的网络或WiFi必须和电脑(使用fiddler)连的网络或Wi…

strtok和strtok_r

strtok和strtok_r原型:char *strtok(char *s, char *delim); 功能:分解字符串为一组字符串。s为要分解的字符串,delim为分隔符字符串。 说明:首次调用时,s指向要分解的字符串,之后再次调用要把s设成NULL。 …

iOS 标签自动布局

导入SKTagFrame SKTagFrame *frame [[SKTagFrame alloc] init];frame.tagsArray self.bigModel.Tags;// 添加标签CGFloat first_H 0;CGFloat total_H 0;for (NSInteger i 0; i< self.bigModel.Tags.count; i) {UIButton *tagsBtn [UIButton buttonWithType:UIButtonT…

引导分区 pbr 数据分析_如何在1小时内引导您的分析

引导分区 pbr 数据分析by Tim Abraham蒂姆亚伯拉罕(Tim Abraham) 如何在1小时内引导您的分析 (How to bootstrap your analytics in 1 hour) Even though most startups understand how critical data is to their success, they tend to shy away from analytics — especial…

SSL 1460——最小代价问题

Description 设有一个nm(小于100)的方格&#xff08;如图所示&#xff09;&#xff0c;在方格中去掉某些点&#xff0c;方格中的数字代表距离&#xff08;为小于100的数&#xff0c;如果为0表示去掉的点&#xff09;&#xff0c;试找出一条从A(左上角)到B&#xff08;右下角&am…

在Windows 7下面IIS7的安装和 配置ASP的正确方法

在Windows 7下如何安装IIS7&#xff0c;以及IIS7在安装过程中的一些需要注意的设置&#xff0c;以及在IIS7下配置ASP的正确方法。 一、进入Windows 7的 控制面板&#xff0c;选择左侧的打开或关闭Windows功能 。二、打开后可以看到Windows功能的界面&#xff0c;注意选择的项目…

适配iOS 13 tabbar 标题字体不显示以及返回变蓝色的为问题

// 适配iOS 13 tabbar 标题字体不显示以及返回变蓝色的为问题 if (available(iOS 13.0, *)) {//[[UITabBar appearance] setUnselectedItemTintColor:Color_666666];}

企业不要求工程师资格认证_谁说工程师不能成为企业家?

企业不要求工程师资格认证by Preethi Kasireddy通过Preethi Kasireddy 谁说工程师不能成为企业家&#xff1f; (Who says engineers can’t become entrepreneurs?) A lot of people warned me not to walk away from my great position at Andreessen Horowitz to pursue so…

BestCoder Round #92 比赛记录

上午考完试后看到了晚上的BestCoder比赛,全机房都来参加 感觉压力好大啊QAQ,要被虐了. 7:00 比赛开始了,迅速点进了T1 大呼这好水啊!告诉了同桌怎么看中文题面 然后就开始码码码,4分16秒AC了第一题 7:05 开始看第二题 诶诶诶!!~~~~直接爆搜不久能过吗? 交了一发爆搜上去,AC了,…

[cocos2dx UI] CCLabelAtlas 为什么不显示最后一个字

CClabelAtlas优点&#xff0c;基本用法等我就不说了&#xff0c;这里说一个和美术配合时的一个坑&#xff01;就是图片的最后一位怎么也不显示&#xff0c;如下图中的冒号不会显示 查了ASCII码表&#xff0c;这个冒号的值为58&#xff0c;就是在9&#xff08;57&#xff09;的后…

iOS 13 适配TextField 崩溃问题

iOS 13 之后直接通过以下方式修改Textfield的时候会出现报错信息 [_accountText setValue:Color_666666 forKeyPath:"_placeholderLabel.textColor"]; 报错信息 Access to UITextField’s _placeholderLabel ivar is prohibited. This is an application bug 解决…

测试django_如何像专业人士一样测试Django Signals

测试djangoby Haki Benita通过Haki Benita 如何像专业人士一样测试Django Signals (How to test Django Signals like a pro) For a better reading experience, check out this article on my website.为了获得更好的阅读体验&#xff0c;请在我的网站上查看此文章 。 Djang…

C#中静态方法的运用和字符串的常用方法(seventh day)

又来到了今天的总结时间&#xff0c;由于昨天在云和学院学的知识没有弄懂&#xff0c;今天老师又专门给我们非常详细地讲了一遍&#xff0c;在这里非常谢谢老师。O(∩_∩)O 话不多说&#xff0c;下面就开始为大家总结一下静态方法的运用和字符串的常用方法。 理论&#xff1a;静…

raid 磁盘阵列

mkdir /uuu #建挂载目录echo "- - -" > /sys/class/scsi_host/host2/scan #扫描新硬盘 lsblk #查看 parted /dev/sdb #分区 parted /dev/sdc lsblk mdadm -Cv /dev/md1 -l1 -n2 -c128 /dev/sd[b,c]1 #raid1配置&#xff0c; /dev/md1名字&#…

iOS 13 如何删除SceneDelegate

Xcode11之后新创建的工程会多出两个文件SceneDelegate。那么我们如何让它变回之前的那样的工程呢。 一、将这两个文件删除。 会报错There is no scene delegate set. A scene delegate class must be specified to use a main storyboard file. 二、将Info.plist 中的 SceneMai…

女性程序员大会ghc_在女性科技大会上成为男人的感觉

女性程序员大会ghcby Elijah Valenciano通过伊莱贾瓦伦西亚诺 在女性科技大会上成为男人的感觉 (What It’s Like to be a Man at a Women’s Tech Conference) To be honest, I was very nervous. A few panicked thoughts started to flood my mind as I prepared myself to…

cf776G.Sherlock and the Encrypted Data

题意:对于一个16进制数x,把x的各个数位拿出来,设其为t1,t2,...,定义s(x)为2^t1|2^t2|...,如x0x3e53,则s(x)2^3|2^14|2^5|2^316424.给出q组询问l,r(l,r也是16进制数,不超过15位),求[l,r]中有多少个数x满足x^s(x)<x. 这题题解写的是个状压数位dp,但是蒟蒻不会数位dp,自己YY了一…

c++, 派生类的构造函数和析构函数 , [ 以及operator=不能被继承 or Not的探讨]

说明&#xff1a;文章中关于operator实现的示例&#xff0c;从语法上是对的&#xff0c;但逻辑和习惯上都是错误的。 参见另一篇专门探究operator的文章&#xff1a;《c&#xff0c;operator》http://www.cnblogs.com/mylinux/p/4113266.html 1.构造函数与析构函数不会被继承&a…