当前位置: 首页 > 编程日记 > 正文

【redis】bitmap技术解析:redis与roaringBitmap

在这里插入图片描述

1.概述

首选看文章:【大数据】稀疏位图存储、RoaringBitmap、布隆过滤器,判断元素是否在集合、精确去重
然后再看这个好理解一些。

转载:bitmap技术解析:redis与roaringBitmap

bitmap的表象意义是,使用一个01标识位来表示是否的状态,可以达到节省空间和高效判定的效果。在我们的实际工作中,也有着许多的应用场景,相信了解bitmap定会给你带来一些额外的收获。

2.bitmap使用场景说明

比如,我想记录某用户某天是否登录过,我们有很多做法。简单的,只要用户登录,就在db中记录一条数据,要判断用户某天是否登录过,只需查询对应日期是否有记录即可。

如果想统计当日登录的人数,count下记录就可以了(可能需要去重))。这样不是不可以,只是如果我们想优化下性能怎么办?这时我们就可以使用bitmap了,以日期为单位创建独立bitmap,一个用户id一个标识,要想判断用户是否登录过,直接取对应位标识即可。

再比如,我们有一批白名单用户,在白名单里则放行,否则拒绝访问。同样,我们可以用一行行的记录用db来保存处理,但这可能很占空间,或者性能不怎么样。同样,使用bitmap可以快速处理这种场景。

再比如,用于快速去重一些处理,第一次处理时,将标识位改为1,后续将进行幂等,用bitmap可以快速过滤。

3. bitmap的通俗理解

bitmap简单理解来说就是,bit的映射,将一个个的key映射到bit位上去,这样就可以快速通过key直接定位到标识上去了。另外,因都是一个个的bit,所以进行count操作很方便。对于两个bitmap的and/or位运算也是很方便和快速的。

4. redis的bitmap实现

理解了面上的bitmap的意思,要怎么做也就大概会有个思路了。

谈到redis,大家的映射问题:高性能,高并发,缓存解决方案。好像有了redis,就有了底气和别人一比高下了似的。那么,在bitmap方面,它是否也神奇之处呢?

实际上,redis的bitmap实现比较简单,和字面上的意思差不多,它是基于string实现的。

简单来说就是,string底层的存储也是二进制的,也就是说string天生就看起来和bitmap的存储类似,比如’ab’的底层存储就是\x61\x62, 拆解成二进制就是 0110 0001 0110 0010。如果我我们直接将其代表bitmap操作数,那么总共就有6个数据有值,分别是2,3,8,10,11,15位有值。这样说bitmap应该很清晰了。

接下来我们来讨论下一个空间问题。我们知道一个16位的二进制可以表示最大 65536,32位最大表示 4294967296,好像一个比较小的位就可以表示很大的数据了。但是这和我们说的bitmap还不一样,在这里,一个16位的二进制数只能表示16个bitmap值,32位数只能表示32个值。从这点来说,bitmap好像很浪费空间呢。我们知道,现在的大多数机器都是64位的。所以,如果我以这种结构存储的话,应该只能存64个标识了。

那么自然的,我们必须要使用一个合适的结构来存储这些bit,redis中使用string结构来存储bitmap,也就是说将string转换成二进制后,用其每一位来表示一个标识。这样的话,能够存放多少个标识就扩展到了string最大限制上去了。redis限制string最大是512M,也就是2^19KB=2^29B=2^32b,即最大2^32位

redis的bitmap操作命令,简单示例如下:(咱们不是文档,如需手册,请参考官网)

setbit key offset 1|0
getbit key
bitcount key

下面,我们简单看下redis的setbit的实现源码,具体看看其处理逻辑。

// bitops.c
// 操作命令: setbit key offset 0|1
/* SETBIT key offset bitvalue */
void setbitCommand(client *c) {
    robj *o;
    char *err = "bit is not an integer or out of range";
    uint64_t bitoffset;
    ssize_t byte, bit;
    int byteval, bitval;
    long on;
  // 解析 offset 值
    if (getBitOffsetFromArgument(c,c->argv[2],&bitoffset,0,0) != C_OK)
        return;
  // 解析 0|1 值
    if (getLongFromObjectOrReply(c,c->argv[3],&on,err) != C_OK)
        return;
  // 只接受0|1的输入,其他一律报错
    /* Bits can only be set or cleared... */
    if (on & ~1) {
        addReplyError(c,err);
    addReplyError(c,err);
        return;
    }
  // 获取key对应的string对象,方便后续操作
    int dirty;
    if ((o = lookupStringForBitCommand(c,bitoffset,&dirty)) == NULL) return;
 
  // 计算偏移量: 1byte=8bit, 所以真正的位所在就等于 byte大定位 + 小移位
  // 从高到低计数, 即类似于 big-endian
    /* Get current values */
    byte = bitoffset >> 3;
    byteval = ((uint8_t*)o->ptr)[byte];
    bit = 7 - (bitoffset & 0x7);
    bitval = byteval & (1 << bit);
 
    /* Either it is newly created, changed length, or the bit changes before and after.
     * Note that the bitval here is actually a decimal number.
     * So we need to use `!!` to convert it to 0 or 1 for comparison. */
    if (dirty || (!!bitval != on)) {
    // 先取反保留当前值, 再重新设置on 进去
        /* Update byte with new bit value. */
        byteval &= ~(1 << bit);
        byteval |= ((on & 0x1) << bit);
        ((uint8_t*)o->ptr)[byte] = byteval;
    // 集群扩散
        signalModifiedKey(c,c->db,c->argv[1]);
        notifyKeyspaceEvent(NOTIFY_STRING,"setbit",c->argv[1],c->db->id);
        server.dirty++;
    }
  // 返回旧的值给客户端
    /* Return original value. */
    addReply(c, bitval ? shared.cone : shared.czero);
}
// 查找key对应的 string 对象
/* This is a helper function for commands implementations that need to write
 * bits to a string object. The command creates or pad with zeroes the string
 * so that the 'maxbit' bit can be addressed. The object is finally
 * returned. Otherwise if the key holds a wrong type NULL is returned and
 * an error is sent to the client. */
robj *lookupStringForBitCommand(client *c, uint64_t maxbit, int *dirty) {
    size_t byte = maxbit >> 3;
    robj *o = lookupKeyWrite(c->db,c->argv[1]);
    if (checkType(c,o,OBJ_STRING)) return NULL;
    if (dirty) *dirty = 0;
       if (o == NULL) {
        o = createObject(OBJ_STRING,sdsnewlen(NULL, byte+1));
        dbAdd(c->db,c->argv[1],o);
        if (dirty) *dirty = 1;
    } else {
        o = dbUnshareStringValue(c->db,c->argv[1],o);
        size_t oldlen = sdslen(o->ptr);
        o->ptr = sdsgrowzero(o->ptr,byte+1);
        if (dirty && oldlen != sdslen(o->ptr)) *dirty = 1;
    }
    return o;
}

很简单吧,不过应对一些场景还是绰绰有余了,选对场景很重要。

redis的bitmap实现简单,易于理解,但也有比较大的弊端。这种基于string的实现方式简单是简单,但存在以下几个问题:

  1. 会存在较大间隙值,比如一开始就存储一个较大的偏移标识进去,比如8位的偏移,就可能让内存占用上M级别(然而你还什么都没干);

  2. 存储范围受限,最大只能存int型的数字偏移,如果以userid为偏移,在用户量小且以自增id生成用户id也许没问题,但其他情况就不好说了;

  3. 随着数据量越来越大,单次设置标识的耗时就会越来越长(大key问题),且一不小心使用get命令进行读取数据时,redis就尴尬了;

5. roaringbitmap实现

上篇讲到redis的实现,简单易懂,但是会存在一个极大空间浪费的问题,而且受限于数组大小,存储空间有限。那有没有什么办法,可以压缩存储空间?

roaringbitmap使用多级分段存储方式,避免了直接存储的问题:一是空隙值问题,二是数值限制问题。它主要通过将64位2个32位存储,将32位分2个16位存储的方式实现。其操作主要有:add/contains/getlongcadinaty… 等常规接口。

其大致存储结构图如下:

在这里插入图片描述
具体实现如下:

// 1. 引入依赖包
        <dependency>
            <groupId>org.roaringbitmap</groupId>
            <artifactId>RoaringBitmap</artifactId>
            <version>0.9.28</version>
        </dependency>
// 2. 建立单元测试
    @Test
    public void testRoaringBitmap() {
        Roaring64NavigableMap bitmapObj = new Roaring64NavigableMap();
        bitmapObj.add(11122233366L);
        boolean exists = bitmapObj.contains(1);
        long eleSize = bitmapObj.getLongCardinality();
        System.out.println("exits:" + exists + ", eleSize:" + eleSize);
    }
// 具体实现
// Roaring64NavigableMap
  /**
   * Set all the specified values to true. This can be expected to be slightly faster than calling
   * "add" repeatedly. The provided integers values don't have to be in sorted order, but it may be
   * preferable to sort them from a performance point of view.
   *
   * @param dat set values
   */
  public void add(long... dat) {
    for (long oneLong : dat) {
      addLong(oneLong);
    }
  }

/**
   * Add the value to the container (set the value to "true"), whether it already appears or not.
   *
   * Java lacks native unsigned longs but the x argument is considered to be unsigned. Within
   * bitmaps, numbers are ordered according to {@link Long#compareUnsigned}. We order the numbers
   * like 0, 1, ..., 9223372036854775807, -9223372036854775808, -9223372036854775807,..., -1.
   *
   * @param x long value
   */
  @Override
  public void addLong(long x) {
  // 高低位32位拆分 (int) (id >> 32)
    int high = high(x);
    int low = low(x);
 
    // Copy the reference to prevent race-condition
    Map.Entry<Integer, BitmapDataProvider> local = latestAddedHigh;
 
    BitmapDataProvider bitmap;
    if (local != null && local.getKey().intValue() == high) {
      bitmap = local.getValue();
    } else {
      bitmap = highToBitmap.get(high);
      if (bitmap == null) {
 // 使用 RoaringBitmap 来保存低层数据, 一级存储
    // 使用 treemap 保存整个结构,保证查找快速
        bitmap = newRoaringBitmap();
        pushBitmapForHigh(high, bitmap);
      }
    // 使用临时保存当前高位实例的方式,避免经常查找map带来的性能消耗
    // 但实际上这要求客户端的操作是按序操作的,这样才能很好利用这个特性,如果只是随机值的话,效果就大打折扣了
      latestAddedHigh = new AbstractMap.SimpleImmutableEntry<>(high, bitmap);
    }
  // 存储低位信息
    bitmap.add(low);
  // 扩容处理
    invalidateAboveHigh(high);
  }
 
 private void invalidateAboveHigh(int high) {
    // The cardinalities after this bucket may not be valid anymore
    if (compare(firstHighNotValid, high) > 0) {
      // High was valid up to now
      firstHighNotValid = high;
 
      int indexNotValid = binarySearch(sortedHighs, firstHighNotValid);
 
      final int indexAfterWhichToReset;
      if (indexNotValid >= 0) {
        indexAfterWhichToReset = indexNotValid;
      } else {
        // We have invalidate a high not already present: added a value for a brand new high
        indexAfterWhichToReset = -indexNotValid - 1;
      }
 
      // This way, sortedHighs remains sorted, without making a new/shorter array
      Arrays.fill(sortedHighs, indexAfterWhichToReset, sortedHighs.length, highestHigh());
    }
    allValid = false;
  }


// 低位存储实现
// roaringbitmap
  /**
   * Add the value to the container (set the value to "true"), whether it already appears or not.
   *
   * Java lacks native unsigned integers but the x argument is considered to be unsigned.
   * Within bitmaps, numbers are ordered according to {@link Integer#compareUnsigned}.
   * We order the numbers like 0, 1, ..., 2147483647, -2147483648, -2147483647,..., -1.
   *
   * @param x integer value
   */
  @Override
  public void add(final int x) {
  // 再分高低位存储, 即32位拆分为2个16位, (char) (x >>> 16)
    final char hb = Util.highbits(x);
  // 已经存储过了,则直接更新值即可
  // highLowContainer = new RoaringArray();
    final int i = highLowContainer.getIndex(hb);
    if (i >= 0) {
    // 此处查找成功,只是代表高位已经被某些值存储过了,但低位仍然在变化
      highLowContainer.setContainerAtIndex(i,
          highLowContainer.getContainerAtIndex(i).add(Util.lowbits(x)));
    } else {
    // 否则新插入一个你们数, 默认以数组形式存储, 默认初始化大小为4
      final ArrayContainer newac = new ArrayContainer();
      highLowContainer.insertNewKeyValueAt(-i - 1, hb, newac.add(Util.lowbits(x)));
    }
  }

// involves a binary search
  int getIndex(char x) {
    // before the binary search, we optimize for frequent cases
    if ((size == 0) || (keys[size - 1] == x)) {
      return size - 1;
    }
  // 使用二分查找法查找值的存在性,实际上内部还有其他优化
    // no luck we have to go through the list
    return this.binarySearch(0, size, x);
  }
  // insert a new key, it is assumed that it does not exist
  void insertNewKeyValueAt(int i, char key, Container value) {
    extendArray(1);
    System.arraycopy(keys, i, keys, i + 1, size - i);
    keys[i] = key;
    System.arraycopy(values, i, values, i + 1, size - i);
    values[i] = value;
    size++;
  }
  // RoaringArray
  protected Container getContainerAtIndex(int i) {
    return this.values[i];
  }

// 数组的低位存储实现
// ArrayContainer
  /**
   * running time is in O(n) time if insert is not in order.
   */
  @Override
  public Container add(final char x) {
  // 要插入的值大于当前容量/未大于当前容量分别处理
    if (cardinality == 0 || (cardinality > 0
            && (x) > (content[cardinality - 1]))) {
    // 大于 4096 后,扩展为 bitmap存储结构
      if (cardinality >= DEFAULT_MAX_SIZE) {
        return toBitmapContainer().add(x);
      }
    // 扩容,策略分多种情况处理
      if (cardinality >= this.content.length) {
        increaseCapacity();
      }
    // 直接数组存储具体值即可
    // 也就是说,表面看起来这里可能会被插入重复的值,但是实际这里插入的是比最大值还大的值
    // 更小的值则会先查找存在性,再进行找位插入
      content[cardinality++] = x;
    } else {
      int loc = Util.unsignedBinarySearch(content, 0, cardinality, x);
    // 小的值被插入到中间,如果找到相同的值,则本次add将被忽略
    // 也就是说,这种实现的是数据的有序插入
      if (loc < 0) {

  // Transform the ArrayContainer to a BitmapContainer
        // when cardinality = DEFAULT_MAX_SIZE
        if (cardinality >= DEFAULT_MAX_SIZE) {
          return toBitmapContainer().add(x);
        }
        if (cardinality >= this.content.length) {
          increaseCapacity();
        }
        // insertion : shift the elements > x by one position to
        // the right
        // and put x in it's appropriate place
        System.arraycopy(content, -loc - 1, content, -loc, cardinality + loc + 1);
        content[-loc - 1] = x;
        ++cardinality;
      }
    }
    return this;
  }
  // temporarily allow an illegally large size, as long as the operation creating
  // the illegal container does not return it.
  private void increaseCapacity(boolean allowIllegalSize) {
    int newCapacity = (this.content.length == 0) ? DEFAULT_INIT_SIZE


           : this.content.length < 1067 ? this.content.length * 3 / 2
                : this.content.length * 5 / 4;
    // never allocate more than we will ever need
    if (newCapacity > ArrayContainer.DEFAULT_MAX_SIZE && !allowIllegalSize) {
      newCapacity = ArrayContainer.DEFAULT_MAX_SIZE;
    }
    // if we are within 1/16th of the max, go to max
    if (newCapacity > ArrayContainer.DEFAULT_MAX_SIZE - ArrayContainer.DEFAULT_MAX_SIZE / 16
        && !allowIllegalSize) {
      newCapacity = ArrayContainer.DEFAULT_MAX_SIZE;
    }
    this.content = Arrays.copyOf(this.content, newCapacity);
  }
 
// bitmap的低位存储实现
// BitmapContainer
  // 转移老数据到bitmap的低位存储中
  /**
   * Copies the data in a bitmap container.
   *
   * @return the bitmap container
   */
  @Override
  public BitmapContainer toBitmapContainer() {
    BitmapContainer bc = new BitmapContainer();

 bc.loadData(this);
    return bc;
  }
 
  void loadData(final ArrayContainer arrayContainer) {
    this.cardinality = arrayContainer.cardinality;
    for (int k = 0; k < arrayContainer.cardinality; ++k) {
      final char x = arrayContainer.content[k];
    // 取整64, 这个移位是真没看懂, 反正超过31之后的
      bitmap[(x) / 64] |= (1L << x);
    }
  }
 
  @Override
  public Container add(final char i) {
    final long previous = bitmap[i >>> 6];
    long newval = previous | (1L << i);
    bitmap[i >>> 6] = newval;
    if (USE_BRANCHLESS) {
      cardinality += (int)((previous ^ newval) >>> i);
    } else if (previous != newval) {
      ++cardinality;
    }
    return this;
  }

整体说明,当数据为空时,结构自然为空,当只有一位数据时,就非常小,当数据量越来越大,空间也跟着变大(这很正常)。只要不是超大数量级的bitmap,空间就不会很大。但如果将每个位上都存储上值,那么它占用的空间比简单的bitmap数据结构是要大些的,因为它的每个key还保存至少超过1bit的数据,甚至是原始数据,另外还有一些额外的treemap的数据结构的开销。

另外,当总体量级上千万的话,其实这种存储方案,存在大对象的问题,你可能就需要jvm参数调优来解决,或者整体换方案了。

6. 还有没有其他更好的实现?

上面两种方案,其实都不错,但好像都还有些问题存在。我们主要针对大数据量的问题,两个方案都没办法解决,那么是否就真的无解了呢?其实,办法还是有的,比如我们做一些自定义的数据分段,比如 1-100的存在bitmap1, 101-200存在bitmap2,这样就可以解决大容量的问题了。

只是这种方案需要我们小心处理自定义分段带来的技术复杂性问题,也得小心对待,尤其是重要的生产场景,必须要有大量的性能测试和准确性测试,否则挖坑给自己就不好玩了。

相关文章:

【Mongdb之数据同步篇】什么是Oplog、Mongodb 开启oplog,java监听oplog并写入关系型数据库、Mongodb动态切换数据源

oplog是local库下的一个固定集合,Secondary就是通过查看Primary 的oplog这个集合来进行复制的。每个节点都有oplog,记录这从主节点复制过来的信息,这样每个成员都可以作为同步源给其他节点。Oplog 可以说是Mongodb Replication的纽带了。

Ubuntu下安装和配置Redis

找到 /ect/redis/redis.conf 文件修改如下:注释掉 127.0.0.1 ,如果不需要远程连接redis则不需要这个操作。使用客户端向 Redis 服务器发送一个 PING ,如果服务器运作正常的话,会返回一个 PONG。默认情况下,Redis服务器不允许远程访问,只允许本机访问,所以我们需要设置打开远程访问的功能。执行sudo apt-get install redis-server 安装命令。查看 redis 是否启动,重新打开一个窗口。停止/启动/重启redis。

Windows下安装和配置Redis

下载版本Redis-x64-5.0.14.1.zip。(可能需要开代理)

ON DUPLICATE KEY UPDATE 导致mysql自增主键ID跳跃增长

具体解决方案可以根据项目来选择,如果项目不大,可以考虑1和2。如果不考虑高并发问题,可以考虑3。

mysql唯一索引与null

根据NULL的定义,NULL表示的是未知,因此两个NULL比较的结果既不相等,也不不等,结果仍然是未知。根据这个定义,多个NULL值的存在应该不违反唯一约束,所以是合理的,在oracel也是如此。在mysql 的innodb引擎中,是允许在唯一索引的字段中出现多个null值的。有上面的表和数据可以看出,查询多条数据。

详解mybatis的insert,update,delete返回值

为什么要提数据的事呢,是因为据说这个save返回的就是插入的数据的条数。但是遗憾的是,我们的这个user怎么能没有id呢,没有id有怎么查,怎么删,怎么改。进来的是没有id的user,出去的是有id的user,真是太厉害了,没想到不仅把返回值改变了,连参数都发生了改变,真是太神奇了。keyProperty=“id” 这是id就是绑定的id,那我就疑惑了,这绑定的哪个id啊。这样一搞,如果插入成功的话返回的是1,如果不成功的话返回的是-1。我让你删id是222222的,我还没创建呢,看你怎么删。

MySQL主从复制(基于binlog日志方式)

主从复制,是用来建立一个和主数据库完全一样的数据库环境,称为从数据库;主数据库一般是准实时的业务数据库。主从复制的作用1.做数据的热备,作为后备数据库,主数据库服务器故障后,可切换到从数据库继续工作,避免数据丢失。2.架构的扩展。业务量越来越大,I/O访问频率过高,单机无法满足,此时做多库的存储,降低磁盘I/O访问的频率,提高单个机器的I/O性能。3.读写分离,使数据库能支撑更大的并发。a.从服务器可以执行查询工作(就是我们常说的读功能),降低主服务器压力;(主库写,从库读,降压)

MySQL 中 is null 和 =null 的区别

如果 set ANSI_NULLS为 ON 时,表示SQL语句遵循SQL-92标准;如果 set ANSI_NULLS 为 OFF 时,表示不遵从 SQL-92 标准。但SQL-92 标准要求对null的 = 或不等于 (!= ,) 比较取值都为 false,也就是 =null 或者 null,返回的都是false。null 在MySQL中不代表任何值,通过运算符是得不到任何结果的,因此只能用 is null(默认情况)MySQL 中 null 不代表任务实际的值,类似于一个未知数。

CSS局限属性contain:优化渲染性能的利器

在网页开发中,优化渲染性能是一个重要的目标。CSS局限属性contain是一个强大的工具,可以帮助我们提高网页的渲染性能。本文将介绍contain属性的基本概念、用法和优势,以及如何使用它来优化网页的渲染过程。

配置nginx+keepalived高可用代理数据库ip端口

需求:配置nginx+keepalived高可用反向代理数据库ip端口(数据库服务器无法增加新SCAN IP或者需要隐藏数据库IP的情况下适用)本机ip为:192.168.20.10和192.168.20.11。2.任意节点关机或重启系统,浮动ip也会自动漂移到另外节点。1.任意节点停nginx:浮动ip会自动漂移到另外节点。安装依赖包和nginx和keepalived。浮动IP为:192.168.20.20。配置keepalived.conf。两台centos7.9。

Redis 击穿、穿透、雪崩产生原因解决思路

也就是在设定的时间里数据没有取出来,但是锁由过期了,常见的思路是,锁过期时间值递增,但是想想不靠谱,因为第一个请求可能超时,如果后面的也超时呢,接连多次超时之后,锁过期时间值势必特别大了,这样做弊端太多。雪崩,和击穿类似,不同的是击穿是一个热点Key某时刻失效,而雪崩是大量的热点Key在一瞬间失效,网络上很多博客都在强调解决雪崩的策略是随机过期时间,这个非常不准确,举个例子,银行做活动,之前这个利息系数为2%,过了零点系数改为3%,这种情况能将用户的对应的key改为随机过期吗?如果用的过去的数据叫脏数据。

MySQL数据库查询语句之组函数,子查询语句

当一个SQL的执行需要借助另一个SQL的执行结果时,则需要进行SQL嵌套,该语法结构称之为子查询。先筛选出符合要求的数据,再对符合要求的数据进行分组时,分组的工作量会被减少,效率更高。先确定从哪张表进行操作-->对表中数据进行分组-->基于分组结果进行查询操作。执行顺序:优先执行小括号内的子SQL,根据子SQL的执行结果再执行外层SQL。执行顺序:from-->where-->group by-->select。执行顺序:from-->group by-->select。

鸿蒙harmony--数据库sqlite详解

今天是1月20号星期六,早安,岁末大寒至,静后春归来。愿他乡故人,漂泊有归宿,前程有奔赴,愿人间不寒,温暖常伴,诸事顺利,喜乐长安。

Redis的key过期策略是怎么实现的

这是一道经典的Redis面试题,一个Redis中可能存在很多很多的key,这些key中可能有很大一部分都有过期时间,此时Redis服务器咋知道哪些key已经过期,哪些还没过期呢?如果直接遍历所有的key,这显然是行不通的,效率非常低!!Redis整体的策略是定期删除和惰性删除相结合。举个栗子:假如我去小卖铺买东西,付款的时候,发现东西过期了。就告知老板,于是老板下架此产品。消费者发现过期了,才去下架,这就叫。小卖铺老板主动定期抽取一部分商品,进行筛查,这就叫定期删除。

雪花算法生成ID、UUID生成ID和MySql自增ID优缺点分析

综上所述,UUID适用于分布式系统和需要保密的场景,雪花ID适用于分布式系统和高并发环境,MySQL自增ID适用于单机系统和高效查询的场景。根据具体的业务需求和系统架构,选择合适的主键类型。通过本文的介绍和对比,希望读者能够更好地理解在MySQL中不推荐使用UUID或者雪花ID作为主键的原因,并能够根据实际情况做出明智的选择。在MySQL中,使用自增整数作为主键是一种常见的做法,因为它具有较小的存储空间、高效的索引和自动增长的特性。然而,具体选择何种主键类型还是要根据具体的业务需求和数据特点来决定。

【小白专用】C# 连接 MySQL 数据库

C# 连接 MySQL 数据库

如何用pthon连接mysql和mongodb数据库【极简版】

发现宝藏 前言 1. 连接mysql 1.1 安装 PyMySQL 1.2 导入 PyMySQL 1.3 建立连接 1.4 创建游标对象 1.5 执行查询 1.6 关闭连接 1.7 完整示例 2. 连接mongodb 2.1 安装 PyMongo 2.2 导入 PyMongo 2.3 建立连接 2.4

Springboot支付宝沙箱支付---完整详细步骤

两种方式进行配置。这里我采取的是默认方式: 开发者如需使用系统默认密钥/证书,可在开发信息中选择系统默认密钥。注意:使用API在线调试工具调试OpenAPI必须使用系统默认密钥。

Linux安装MongoDB教程

将解压后的 mongodb-linux-x86_64-rhel70-4.2.23 中的所有文件全部移动到 /usr/local/mongodb 中 :注意/*是所有子文件。也可以不用设置环境变量进行启动,但是不设置环境变量启动的话要每次启动写很多启动参数,比较麻烦,所以做好配置环境变量。在 mongodb 下创建 data 和 logs 目录,以及日志文件mongodb.log。在 /usr/local 目录中创建 mongodb 文件夹。启动 MongoDB(-conf 使用配置文件方式启动)

什么是HBase?终于有人讲明白了

在 HBase 表中,一条数据拥有一个全局唯一的键(RowKey)和任意数量的列(Column),一列或多列组成一个列族(Column Family),同一个列族中列的数据在物理上都存储在同一个 HFile 中,这样基于列存储的数据结构有利于数据缓存和查询。HBase Client 为用户提供了访问 HBase 的接口,可以通过元数据表来定位到目标数据的 RegionServer,另外 HBase Client 还维护了对应的 cache 来加速 Hbase 的访问,比如缓存元数据的信息。

Spring中事务控制的API介绍(PlatformTransactionManager和TransactionDefinition)

事务传播行为(propagation behavior)指的就是当一个事务方法被另一个事务方法调用时,这个事务方法应该如何进行。例如:methodA事务方法调用methodB事务方法时,methodB是继续在调用者methodA的事务中运行呢,还是为自己开启一个新事务运行,这就是由methodB的事务传播行为决定的。属性,同时,Spring 还为我们提供了一个默认的实现类:DefaultTransactionDefinition,该类适用于大多数情况。作用:是一个事务管理器,负责开启、提交或回滚事务。

ClickHouse 与mysql等关系型数据库对比

先用一张图帮助理解两者的本质上的区。

Redis 除了用作缓存还能干吗?

Redis 是一种内存键值数据库。它支持多种数据结构,如 String, Hash, List, Set 和 SortedSet。

Windows安装MySQL及网络配置

向日葵软件是一种远程控制软件,可以让用户在不同设备之间进行远程桌面访问和文件传输。用户可以通过向日葵软件,在任何具有互联网连接的设备上远程控制其他设备,包括计算机、智能手机和平板电脑。用户只需安装向日葵软件,并使用登录凭据连接到目标设备,就可以实时控制目标设备上的屏幕、键盘和鼠标。向日葵软件还提供了一些辅助功能,如文件传输、远程打印和远程会议等。这使得向日葵软件成为一个方便实用的远程协助工具,适用于个人用户、技术支持人员和企业用户等各种场景。

Web数据库基本知识,SQL基本语法

SQL(Structured Query Language)是一种用于管理和操作关系型数据库管理系统(RDBMS)的特定领域语言。它是一种标准化的语言,用于定义和操作关系型数据库中的数据。SQL允许用户执行诸如查询数据、插入新数据、更新现有数据和删除数据等操作。分为四种DDL:数据库定义语言(define)DML:数据库操作管理语言(manage)DQL:数据库查询语言(query)DCL:数据库控制语言(control)

分库分表解决方案-ShardingSphere-JDBC

ShardingSphere-JDBC 是一个工作在客户端的,定位为轻量级 Java 框架,在 Java 的 JDBC 层提供的额外服务。可以将任意数据库转换为分布式数据库,并通过数据分片、弹性伸缩、加密等能力对原有数据库进行增强。

深入理解Mysql事务隔离级别与锁机制

我们的数据库一般都会并发执行多个事务,多个事务可能会并发的对相同的一批数据进行增删改查操作,可能就会导致我们说的脏写、脏读、不可重复读、幻读这些问题。这些问题的本质都是数据库的多事务并发问题,为了解决多事务并发问题,数据库设计了事务隔离机制、锁机制、MVCC多版本并发控制隔离机制,用一整套机制来解决多事务并发问题。接下来,我们会深入讲解这些机制,让大家彻底理解数据库内部的执行原理。

在云计算环境中,如何利用 AI 改进云计算系统和数据库系统性能

2023年我想大家讨论最多,热度最大的技术领域就是 AIGC 了,AI绘画的兴起,ChatGPT的火爆,在微软背后推手的 OpenAI 大战 Google几回合后,国内各种的大语言模型产品也随之各家百花齐放,什么文心一言、通义千问、科大讯飞的星火以及华为的盘古等等,一下子国内也涌现出几十种人工智能的大语言模型产品。ChatGPT 爆火之后,你是否有冷静的思考过 AIGC 的兴起对我们有哪些机遇与挑战?我们如何将AI 应用到我们现有的工作学习中?_aigc k8s

thinkphp操作mongo数据的三种方法

'hostname' => '10.10.10.10', // MongoDB服务器地址。'hostport' => 2017, // MongoDB服务器端口。'database' => 'chatname', // 数据库名称。后面接着就可以任意使用Connection各类方法。后面接着就可以任意使用Collection各类方法。使用MongoDB PHP驱动程序,方法三。后面接着就可以任意使用db下的增删改查。使用tp中的db类,方法二。使用tp中的扩展,方法一。

获得JD商品评论 API 如何实现实时数据获取

随着互联网的快速发展,电商平台如雨后春笋般涌现,其中京东(JD)作为中国最大的自营式电商平台之一,拥有庞大的用户群体和丰富的商品资源。为了更好地了解用户对商品的反馈,京东开放了商品评论的API接口,允许开发者实时获取商品评论数据。本文将介绍如何通过JD商品评论API实现实时数据获取,并给出相应的代码示例。JD商品评论API提供了一系列的接口,允许开发者根据需要获取不同维度的评论数据。通过该API,开发者可以获取到商品的详细评论信息、评论的统计数据以及用户的评论行为数据等。