Github标星24k,127篇经典论文下载,这份深度学习论文阅读路线图不容错过
作者 | Floodsung
翻译 | 黄海广
来源 | 机器学习初学者(ID:ai-start-com)
【导读】如果你是深度学习领域的新手,那么你可能会遇到的第一个问题是“我应该从哪篇论文开始阅读?”本文就是一篇深度学习论文的阅读路线图!
该路线图是根据以下四个准则构建的:
从轮廓到细节
从旧到最新
从通用到特定领域
专注于最新技术
你会发现许多非常新的论文,但确实值得阅读。
此外,作者将继续在此路线图中添加论文。
我已经将论文全部下载了,放到百度云提供下载。
百度云地址:
链接:pan.baidu.com/s/17Xcg6-
提取码:fnks
我将本文放在我的数据科学的github中:
github地址:
github.com/fengdu78/Dat
论文我做成了zotero格式,可以直接在zotero中导入,如果没有安装zotero,那么也可以下载分类好的pdf文件,按照本文论文目录进行分类了。
使用方法:
1.zotero 中阅读,先导入到zotero,阅读论文只需要在红框中输入论文名称即可搜到。
2.直接下载文件阅读
论文目录
1 深度学习的历史和基础
1.0 图书
1.1 回顾
1.2 深度信念网络(DBN)(深度学习前夜的里程碑)
1.3 ImageNet的发展(深度学习从这里爆发)
1.4 语音识别的发展
2 深度学习方法
2.1 深度学习模型
2.2 优化方法
2.3 无监督学习/ 深度生成模型
2.4 RNN / 序列到序列模型
2.5 神经图灵机
2.6 深度强化学习
2.7 深度迁移学习/终身学习/特别是针对强化学习
2.8 One-Shot深度学习
3 应用
3.1 NLP(自然语言处理)
3.2 目标检测
3.3 目标跟踪
3.4 图像标注
3.5 机器翻译
3.6 机器人
3.7 Art
3.8 目标分割
1 深度学习的历史和基础
1.0 图书
[0] Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. "Deep learning." An MIT Press book. (2015). [html] (Deep Learning Bible, you can read this book while reading following papers.) ⭐️⭐️⭐️⭐️⭐️
1.1 回顾
[1] LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." Nature 521.7553 (2015): 436-444. [pdf] (Three Giants' Survey) ⭐️⭐️⭐️⭐️⭐️
1.2 深度信念网络(DBN)(深度学习前夜的里程碑)
[2] Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. "A fast learning algorithm for deep belief nets." Neural computation 18.7 (2006): 1527-1554. [pdf](Deep Learning Eve) ⭐️⭐️⭐️
[3] Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the dimensionality of data with neural networks." Science 313.5786 (2006): 504-507. [pdf] (Milestone, Show the promise of deep learning) ⭐️⭐️⭐️
1.3 ImageNet的发展(深度学习从这里爆发)
[4] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems. 2012. [pdf] (AlexNet, Deep Learning Breakthrough) ⭐️⭐️⭐️⭐️⭐️
[5] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014). [pdf] (VGGNet,Neural Networks become very deep!) ⭐️⭐️⭐️
[6] Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015. [pdf] (GoogLeNet) ⭐️⭐️⭐️
[7] He, Kaiming, et al. "Deep residual learning for image recognition." arXiv preprint arXiv:1512.03385 (2015). [pdf] (ResNet,Very very deep networks, CVPR best paper) ⭐️⭐️⭐️⭐️⭐️
1.4 语音识别的发展
[8] Hinton, Geoffrey, et al. "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups." IEEE Signal Processing Magazine 29.6 (2012): 82-97. [pdf] (Breakthrough in speech recognition)⭐️⭐️⭐️⭐️
[9] Graves, Alex, Abdel-rahman Mohamed, and Geoffrey Hinton. "Speech recognition with deep recurrent neural networks." 2013 IEEE international conference on acoustics, speech and signal processing. IEEE, 2013. [pdf] (RNN)⭐️⭐️⭐️
[10] Graves, Alex, and Navdeep Jaitly. "Towards End-To-End Speech Recognition with Recurrent Neural Networks." ICML. Vol. 14. 2014. [pdf]⭐️⭐️⭐️
[11] Sak, Haşim, et al. "Fast and accurate recurrent neural network acoustic models for speech recognition." arXiv preprint arXiv:1507.06947 (2015). [pdf] (Google Speech Recognition System) ⭐️⭐️⭐️
[12] Amodei, Dario, et al. "Deep speech 2: End-to-end speech recognition in english and mandarin." arXiv preprint arXiv:1512.02595 (2015). [pdf] (Baidu Speech Recognition System) ⭐️⭐️⭐️⭐️
[13] W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu, G. Zweig "Achieving Human Parity in Conversational Speech Recognition." arXiv preprint arXiv:1610.05256 (2016). [pdf] (State-of-the-art in speech recognition, Microsoft) ⭐️⭐️⭐️⭐️
阅读以上论文后,您将对深度学习的历史,深度学习模型的基本架构(包括CNN,RNN,LSTM)以及如何将深度学习应用于图像和语音识别问题有基本的了解。以下论文将带您深入了解深度学习方法,不同应用领域和领域的深度学习。我建议您根据自己的兴趣和研究方向选择以下论文。
2 深度学习方法
2.1 深度学习模型
[14] Hinton, Geoffrey E., et al. "Improving neural networks by preventing co-adaptation of feature detectors." arXiv preprint arXiv:1207.0580 (2012). [pdf] (Dropout) ⭐️⭐️⭐️
[15] Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting." Journal of Machine Learning Research 15.1 (2014): 1929-1958. [pdf] ⭐️⭐️⭐️
[16] Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." arXiv preprint arXiv:1502.03167 (2015). [pdf] (An outstanding Work in 2015) ⭐️⭐️⭐️⭐️
[17] Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. "Layer normalization." arXiv preprint arXiv:1607.06450 (2016). [pdf] (Update of Batch Normalization) ⭐️⭐️⭐️⭐️
[18] Courbariaux, Matthieu, et al. "Binarized Neural Networks: Training Neural Networks with Weights and Activations Constrained to+ 1 or−1." [pdf] (New Model,Fast) ⭐️⭐️⭐️
[19] Jaderberg, Max, et al. "Decoupled neural interfaces using synthetic gradients." arXiv preprint arXiv:1608.05343 (2016). [pdf] (Innovation of Training Method,Amazing Work) ⭐️⭐️⭐️⭐️⭐️
[20] Chen, Tianqi, Ian Goodfellow, and Jonathon Shlens. "Net2net: Accelerating learning via knowledge transfer." arXiv preprint arXiv:1511.05641 (2015). [pdf] (Modify previously trained network to reduce training epochs) ⭐️⭐️⭐️
[21] Wei, Tao, et al. "Network Morphism." arXiv preprint arXiv:1603.01670 (2016). [pdf] (Modify previously trained network to reduce training epochs) ⭐️⭐️⭐️
2.2 优化方法
[22] Sutskever, Ilya, et al. "On the importance of initialization and momentum in deep learning." ICML (3) 28 (2013): 1139-1147. [pdf] (Momentum optimizer) ⭐️⭐️
[23] Kingma, Diederik, and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.6980 (2014). [pdf] (Maybe used most often currently) ⭐️⭐️⭐️
[24] Andrychowicz, Marcin, et al. "Learning to learn by gradient descent by gradient descent." arXiv preprint arXiv:1606.04474 (2016). [pdf] (Neural Optimizer,Amazing Work) ⭐️⭐️⭐️⭐️⭐️
[25] Han, Song, Huizi Mao, and William J. Dally. "Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding." CoRR, abs/1510.00149 2 (2015). [pdf] (ICLR best paper, new direction to make NN running fast,DeePhi Tech Startup) ⭐️⭐️⭐️⭐️⭐️
[26] Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 1MB model size." arXiv preprint arXiv:1602.07360 (2016). [pdf] (Also a new direction to optimize NN,DeePhi Tech Startup) ⭐️⭐️⭐️⭐️
2.3 无监督学习/ 深度生成模型
[27] Le, Quoc V. "Building high-level features using large scale unsupervised learning." 2013 IEEE international conference on acoustics, speech and signal processing. IEEE, 2013. [pdf] (Milestone, Andrew Ng, Google Brain Project, Cat) ⭐️⭐️⭐️⭐️
[28] Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." arXiv preprint arXiv:1312.6114 (2013). [pdf] (VAE) ⭐️⭐️⭐️⭐️
[29] Goodfellow, Ian, et al. "Generative adversarial nets." Advances in Neural Information Processing Systems. 2014. [pdf] (GAN,super cool idea) ⭐️⭐️⭐️⭐️⭐️
[30] Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015). [pdf] (DCGAN) ⭐️⭐️⭐️⭐️
[31] Gregor, Karol, et al. "DRAW: A recurrent neural network for image generation." arXiv preprint arXiv:1502.04623 (2015). [pdf] (VAE with attention, outstanding work) ⭐️⭐️⭐️⭐️⭐️
[32] Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. "Pixel recurrent neural networks." arXiv preprint arXiv:1601.06759 (2016). [pdf] (PixelRNN) ⭐️⭐️⭐️⭐️
[33] Oord, Aaron van den, et al. "Conditional image generation with PixelCNN decoders." arXiv preprint arXiv:1606.05328 (2016). [pdf] (PixelCNN) ⭐️⭐️⭐️⭐️
2.4 RNN / 序列到序列模型
[34] Graves, Alex. "Generating sequences with recurrent neural networks." arXiv preprint arXiv:1308.0850 (2013). [pdf] (LSTM, very nice generating result, show the power of RNN) ⭐️⭐️⭐️⭐️
[35] Cho, Kyunghyun, et al. "Learning phrase representations using RNN encoder-decoder for statistical machine translation." arXiv preprint arXiv:1406.1078 (2014). [pdf] (First Seq-to-Seq Paper) ⭐️⭐️⭐️⭐️
[36] Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. "Sequence to sequence learning with neural networks." Advances in neural information processing systems. 2014. [pdf] (Outstanding Work) ⭐️⭐️⭐️⭐️⭐️
[37] Bahdanau, Dzmitry, KyungHyun Cho, and Yoshua Bengio. "Neural Machine Translation by Jointly Learning to Align and Translate." arXiv preprint arXiv:1409.0473 (2014). [pdf] ⭐️⭐️⭐️⭐️
[38] Vinyals, Oriol, and Quoc Le. "A neural conversational model." arXiv preprint arXiv:1506.05869 (2015). [pdf] (Seq-to-Seq on Chatbot) ⭐️⭐️⭐️
2.5 神经图灵机
[39] Graves, Alex, Greg Wayne, and Ivo Danihelka. "Neural turing machines." arXiv preprint arXiv:1410.5401 (2014). [pdf] (Basic Prototype of Future Computer) ⭐️⭐️⭐️⭐️⭐️
[40] Zaremba, Wojciech, and Ilya Sutskever. "Reinforcement learning neural Turing machines." arXiv preprint arXiv:1505.00521 362 (2015). [pdf] ⭐️⭐️⭐️
[41] Weston, Jason, Sumit Chopra, and Antoine Bordes. "Memory networks." arXiv preprint arXiv:1410.3916 (2014). [pdf] ⭐️⭐️⭐️
[42] Sukhbaatar, Sainbayar, Jason Weston, and Rob Fergus. "End-to-end memory networks." Advances in neural information processing systems. 2015. [pdf] ⭐️⭐️⭐️⭐️
[43] Vinyals, Oriol, Meire Fortunato, and Navdeep Jaitly. "Pointer networks." Advances in Neural Information Processing Systems. 2015. [pdf] ⭐️⭐️⭐️⭐️
[44] Graves, Alex, et al. "Hybrid computing using a neural network with dynamic external memory." Nature (2016). [pdf] (Milestone,combine above papers' ideas) ⭐️⭐️⭐️⭐️⭐️
2.6 深度强化学习
[45] Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning." arXiv preprint arXiv:1312.5602 (2013). [pdf]) (First Paper named deep reinforcement learning) ⭐️⭐️⭐️⭐️
[46] Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature 518.7540 (2015): 529-533. [pdf] (Milestone) ⭐️⭐️⭐️⭐️⭐️
[47] Wang, Ziyu, Nando de Freitas, and Marc Lanctot. "Dueling network architectures for deep reinforcement learning." arXiv preprint arXiv:1511.06581 (2015). [pdf] (ICLR best paper,great idea) ⭐️⭐️⭐️⭐️
[48] Mnih, Volodymyr, et al. "Asynchronous methods for deep reinforcement learning." arXiv preprint arXiv:1602.01783 (2016). [pdf] (State-of-the-art method) ⭐️⭐️⭐️⭐️⭐️
[49] Lillicrap, Timothy P., et al. "Continuous control with deep reinforcement learning." arXiv preprint arXiv:1509.02971 (2015). [pdf] (DDPG) ⭐️⭐️⭐️⭐️
[50] Gu, Shixiang, et al. "Continuous Deep Q-Learning with Model-based Acceleration." arXiv preprint arXiv:1603.00748 (2016). [pdf] (NAF) ⭐️⭐️⭐️⭐️
[51] Schulman, John, et al. "Trust region policy optimization." CoRR, abs/1502.05477 (2015). [pdf] (TRPO) ⭐️⭐️⭐️⭐️
[52] Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." Nature 529.7587 (2016): 484-489. [pdf] (AlphaGo) ⭐️⭐️⭐️⭐️⭐️
2.7 深度迁移学习/终身学习/特别是针对强化学习
[53] Bengio, Yoshua. "Deep Learning of Representations for Unsupervised and Transfer Learning." ICML Unsupervised and Transfer Learning 27 (2012): 17-36. [pdf] (A Tutorial) ⭐️⭐️⭐️
[54] Silver, Daniel L., Qiang Yang, and Lianghao Li. "Lifelong Machine Learning Systems: Beyond Learning Algorithms." AAAI Spring Symposium: Lifelong Machine Learning. 2013. [pdf] (A brief discussion about lifelong learning) ⭐️⭐️⭐️
[55] Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. "Distilling the knowledge in a neural network." arXiv preprint arXiv:1503.02531 (2015). [pdf] (Godfather's Work) ⭐️⭐️⭐️⭐️
[56] Rusu, Andrei A., et al. "Policy distillation." arXiv preprint arXiv:1511.06295 (2015). [pdf] (RL domain) ⭐️⭐️⭐️
[57] Parisotto, Emilio, Jimmy Lei Ba, and Ruslan Salakhutdinov. "Actor-mimic: Deep multitask and transfer reinforcement learning." arXiv preprint arXiv:1511.06342 (2015). [pdf] (RL domain) ⭐️⭐️⭐️
[58] Rusu, Andrei A., et al. "Progressive neural networks." arXiv preprint arXiv:1606.04671 (2016). [pdf] (Outstanding Work, A novel idea) ⭐️⭐️⭐️⭐️⭐️
2.8 One-Shot深度学习
[59] Lake, Brenden M., Ruslan Salakhutdinov, and Joshua B. Tenenbaum. "Human-level concept learning through probabilistic program induction." Science 350.6266 (2015): 1332-1338. [pdf] (No Deep Learning,but worth reading) ⭐️⭐️⭐️⭐️⭐️
[60] Koch, Gregory, Richard Zemel, and Ruslan Salakhutdinov. "Siamese Neural Networks for One-shot Image Recognition."(2015) [pdf] ⭐️⭐️⭐️
[61] Santoro, Adam, et al. "One-shot Learning with Memory-Augmented Neural Networks." arXiv preprint arXiv:1605.06065 (2016). [pdf] (A basic step to one shot learning) ⭐️⭐️⭐️⭐️
[62] Vinyals, Oriol, et al. "Matching Networks for One Shot Learning." arXiv preprint arXiv:1606.04080 (2016). [pdf] ⭐️⭐️⭐️
[63] Hariharan, Bharath, and Ross Girshick. "Low-shot visual object recognition." arXiv preprint arXiv:1606.02819 (2016). [pdf] (A step to large data) ⭐️⭐️⭐️⭐️
3 应用
3.1 NLP(自然语言处理)
[1] Antoine Bordes, et al. "Joint Learning of Words and Meaning Representations for Open-Text Semantic Parsing." AISTATS(2012) [pdf] ⭐️⭐️⭐️⭐️
[2] Mikolov, et al. "Distributed representations of words and phrases and their compositionality." ANIPS(2013): 3111-3119 [pdf] (word2vec) ⭐️⭐️⭐️
[3] Sutskever, et al. "“Sequence to sequence learning with neural networks." ANIPS(2014) [pdf] ⭐️⭐️⭐️
[4] Ankit Kumar, et al. "“Ask Me Anything: Dynamic Memory Networks for Natural Language Processing." arXiv preprint arXiv:1506.07285(2015) [pdf] ⭐️⭐️⭐️⭐️
[5] Yoon Kim, et al. "Character-Aware Neural Language Models." NIPS(2015) arXiv preprint arXiv:1508.06615(2015) [pdf] ⭐️⭐️⭐️⭐️
[6] Jason Weston, et al. "Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks." arXiv preprint arXiv:1502.05698(2015) [pdf] (bAbI tasks) ⭐️⭐️⭐️
[7] Karl Moritz Hermann, et al. "Teaching Machines to Read and Comprehend." arXiv preprint arXiv:1506.03340(2015) [pdf] (CNN/DailyMail cloze style questions) ⭐️⭐️
[8] Alexis Conneau, et al. "Very Deep Convolutional Networks for Natural Language Processing." arXiv preprint arXiv:1606.01781(2016) [pdf] (state-of-the-art in text classification) ⭐️⭐️⭐️
[9] Armand Joulin, et al. "Bag of Tricks for Efficient Text Classification." arXiv preprint arXiv:1607.01759(2016) [pdf] (slightly worse than state-of-the-art, but a lot faster) ⭐️⭐️⭐️
3.2 目标检测
[1] Szegedy, Christian, Alexander Toshev, and Dumitru Erhan. "Deep neural networks for object detection." Advances in Neural Information Processing Systems. 2013. [pdf] ⭐️⭐️⭐️
[2] Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2014. [pdf] (RCNN) ⭐️⭐️⭐️⭐️⭐️
[3] He, Kaiming, et al. "Spatial pyramid pooling in deep convolutional networks for visual recognition." European Conference on Computer Vision. Springer International Publishing, 2014. [pdf] (SPPNet) ⭐️⭐️⭐️⭐️
[4] Girshick, Ross. "Fast r-cnn." Proceedings of the IEEE International Conference on Computer Vision. 2015. [pdf] ⭐️⭐️⭐️⭐️
[5] Ren, Shaoqing, et al. "Faster R-CNN: Towards real-time object detection with region proposal networks." Advances in neural information processing systems. 2015. [pdf] ⭐️⭐️⭐️⭐️
[6] Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." arXiv preprint arXiv:1506.02640 (2015). [pdf] (YOLO,Oustanding Work, really practical) ⭐️⭐️⭐️⭐️⭐️
[7] Liu, Wei, et al. "SSD: Single Shot MultiBox Detector." arXiv preprint arXiv:1512.02325 (2015). [pdf] ⭐️⭐️⭐️
[8] Dai, Jifeng, et al. "R-FCN: Object Detection via Region-based Fully Convolutional Networks." arXiv preprint arXiv:1605.06409 (2016). [pdf] ⭐️⭐️⭐️⭐️
[9] He, Gkioxari, et al. "Mask R-CNN" arXiv preprint arXiv:1703.06870 (2017). [pdf] ⭐️⭐️⭐️⭐️
3.3 目标跟踪
[1] Wang, Naiyan, and Dit-Yan Yeung. "Learning a deep compact image representation for visual tracking." Advances in neural information processing systems. 2013. [pdf] (First Paper to do visual tracking using Deep Learning,DLT Tracker) ⭐️⭐️⭐️
[2] Wang, Naiyan, et al. "Transferring rich feature hierarchies for robust visual tracking." arXiv preprint arXiv:1501.04587 (2015). [pdf] (SO-DLT) ⭐️⭐️⭐️⭐️
[3] Wang, Lijun, et al. "Visual tracking with fully convolutional networks." Proceedings of the IEEE International Conference on Computer Vision. 2015. [pdf] (FCNT) ⭐️⭐️⭐️⭐️
[4] Held, David, Sebastian Thrun, and Silvio Savarese. "Learning to Track at 100 FPS with Deep Regression Networks." arXiv preprint arXiv:1604.01802 (2016). [pdf] (GOTURN,Really fast as a deep learning method,but still far behind un-deep-learning methods) ⭐️⭐️⭐️⭐️
[5] Bertinetto, Luca, et al. "Fully-Convolutional Siamese Networks for Object Tracking." arXiv preprint arXiv:1606.09549 (2016). [pdf] (SiameseFC,New state-of-the-art for real-time object tracking) ⭐️⭐️⭐️⭐️
[6] Martin Danelljan, Andreas Robinson, Fahad Khan, Michael Felsberg. "Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking." ECCV (2016) [pdf] (C-COT) ⭐️⭐️⭐️⭐️
[7] Nam, Hyeonseob, Mooyeol Baek, and Bohyung Han. "Modeling and Propagating CNNs in a Tree Structure for Visual Tracking." arXiv preprint arXiv:1608.07242 (2016). [pdf] (VOT2016 Winner,TCNN) ⭐️⭐️⭐️⭐️
3.4 图像标注
[1] Farhadi,Ali,etal. "Every picture tells a story: Generating sentences from images". In Computer VisionECCV 2010. Springer Berlin Heidelberg:15-29, 2010. [pdf] ⭐️⭐️⭐️
[2] Kulkarni, Girish, et al. "Baby talk: Understanding and generating image descriptions". In Proceedings of the 24th CVPR, 2011. [pdf]⭐️⭐️⭐️⭐️
[3] Vinyals, Oriol, et al. "Show and tell: A neural image caption generator". In arXiv preprint arXiv:1411.4555, 2014. [pdf]⭐️⭐️⭐️
[4] Donahue, Jeff, et al. "Long-term recurrent convolutional networks for visual recognition and description". In arXiv preprint arXiv:1411.4389 ,2014. [pdf]
[5] Karpathy, Andrej, and Li Fei-Fei. "Deep visual-semantic alignments for generating image descriptions". In arXiv preprint arXiv:1412.2306, 2014. [pdf]⭐️⭐️⭐️⭐️⭐️
[6] Karpathy, Andrej, Armand Joulin, and Fei Fei F. Li. "Deep fragment embeddings for bidirectional image sentence mapping". In Advances in neural information processing systems, 2014. [pdf]⭐️⭐️⭐️⭐️
[7] Fang, Hao, et al. "From captions to visual concepts and back". In arXiv preprint arXiv:1411.4952, 2014. [pdf]⭐️⭐️⭐️⭐️⭐️
[8] Chen, Xinlei, and C. Lawrence Zitnick. "Learning a recurrent visual representation for image caption generation". In arXiv preprint arXiv:1411.5654, 2014. [pdf]⭐️⭐️⭐️⭐️
[9] Mao, Junhua, et al. "Deep captioning with multimodal recurrent neural networks (m-rnn)". In arXiv preprint arXiv:1412.6632, 2014. [pdf]⭐️⭐️⭐️
[10] Xu, Kelvin, et al. "Show, attend and tell: Neural image caption generation with visual attention". In arXiv preprint arXiv:1502.03044, 2015. [pdf]⭐️⭐️⭐️⭐️⭐️
3.5 机器翻译
Some milestone papers are listed in RNN / Seq-to-Seq topic.
[1] Luong, Minh-Thang, et al. "Addressing the rare word problem in neural machine translation." arXiv preprint arXiv:1410.8206 (2014). [pdf] ⭐️⭐️⭐️⭐️
[2] Sennrich, et al. "Neural Machine Translation of Rare Words with Subword Units". In arXiv preprint arXiv:1508.07909, 2015. [pdf]⭐️⭐️⭐️
[3] Luong, Minh-Thang, Hieu Pham, and Christopher D. Manning. "Effective approaches to attention-based neural machine translation." arXiv preprint arXiv:1508.04025 (2015). [pdf] ⭐️⭐️⭐️⭐️
[4] Chung, et al. "A Character-Level Decoder without Explicit Segmentation for Neural Machine Translation". In arXiv preprint arXiv:1603.06147, 2016. [pdf]⭐️⭐️
[5] Lee, et al. "Fully Character-Level Neural Machine Translation without Explicit Segmentation". In arXiv preprint arXiv:1610.03017, 2016. [pdf]⭐️⭐️⭐️⭐️⭐️
[6] Wu, Schuster, Chen, Le, et al. "Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation". In arXiv preprint arXiv:1609.08144v2, 2016. [pdf] (Milestone) ⭐️⭐️⭐️⭐️
3.6 机器人
[1] Koutník, Jan, et al. "Evolving large-scale neural networks for vision-based reinforcement learning." Proceedings of the 15th annual conference on Genetic and evolutionary computation. ACM, 2013. [pdf] ⭐️⭐️⭐️
[2] Levine, Sergey, et al. "End-to-end training of deep visuomotor policies." Journal of Machine Learning Research 17.39 (2016): 1-40. [pdf] ⭐️⭐️⭐️⭐️⭐️
[3] Pinto, Lerrel, and Abhinav Gupta. "Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot hours." arXiv preprint arXiv:1509.06825 (2015). [pdf] ⭐️⭐️⭐️
[4] Levine, Sergey, et al. "Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection." arXiv preprint arXiv:1603.02199 (2016). [pdf] ⭐️⭐️⭐️⭐️
[5] Zhu, Yuke, et al. "Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning." arXiv preprint arXiv:1609.05143 (2016). [pdf] ⭐️⭐️⭐️⭐️
[6] Yahya, Ali, et al. "Collective Robot Reinforcement Learning with Distributed Asynchronous Guided Policy Search." arXiv preprint arXiv:1610.00673 (2016). [pdf] ⭐️⭐️⭐️⭐️
[7] Gu, Shixiang, et al. "Deep Reinforcement Learning for Robotic Manipulation." arXiv preprint arXiv:1610.00633 (2016). [pdf] ⭐️⭐️⭐️⭐️
[8] A Rusu, M Vecerik, Thomas Rothörl, N Heess, R Pascanu, R Hadsell."Sim-to-Real Robot Learning from Pixels with Progressive Nets." arXiv preprint arXiv:1610.04286 (2016). [pdf] ⭐️⭐️⭐️⭐️
[9] Mirowski, Piotr, et al. "Learning to navigate in complex environments." arXiv preprint arXiv:1611.03673 (2016). [pdf] ⭐️⭐️⭐️⭐️
3.7 Art
[1] Mordvintsev, Alexander; Olah, Christopher; Tyka, Mike (2015). "Inceptionism: Going Deeper into Neural Networks". Google Research. [html] (Deep Dream) ⭐️⭐️⭐️⭐️
[2] Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. "A neural algorithm of artistic style." arXiv preprint arXiv:1508.06576 (2015). [pdf] (Outstanding Work, most successful method currently) ⭐️⭐️⭐️⭐️⭐️
[3] Zhu, Jun-Yan, et al. "Generative Visual Manipulation on the Natural Image Manifold." European Conference on Computer Vision. Springer International Publishing, 2016. [pdf] (iGAN) ⭐️⭐️⭐️⭐️
[4] Champandard, Alex J. "Semantic Style Transfer and Turning Two-Bit Doodles into Fine Artworks." arXiv preprint arXiv:1603.01768 (2016). [pdf] (Neural Doodle) ⭐️⭐️⭐️⭐️
[5] Zhang, Richard, Phillip Isola, and Alexei A. Efros. "Colorful Image Colorization." arXiv preprint arXiv:1603.08511 (2016). [pdf] ⭐️⭐️⭐️⭐️
[6] Johnson, Justin, Alexandre Alahi, and Li Fei-Fei. "Perceptual losses for real-time style transfer and super-resolution." arXiv preprint arXiv:1603.08155 (2016). [pdf] ⭐️⭐️⭐️⭐️
[7] Vincent Dumoulin, Jonathon Shlens and Manjunath Kudlur. "A learned representation for artistic style." arXiv preprint arXiv:1610.07629 (2016). [pdf] ⭐️⭐️⭐️⭐️
[8] Gatys, Leon and Ecker, et al."Controlling Perceptual Factors in Neural Style Transfer." arXiv preprint arXiv:1611.07865 (2016). [pdf] (control style transfer over spatial location,colour information and across spatial scale)⭐️⭐️⭐️⭐️
[9] Ulyanov, Dmitry and Lebedev, Vadim, et al. "Texture Networks: Feed-forward Synthesis of Textures and Stylized Images." arXiv preprint arXiv:1603.03417(2016). [pdf] (texture generation and style transfer) ⭐️⭐️⭐️⭐️
3.8 目标分割
[1] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation.” in CVPR, 2015. [pdf] ⭐️⭐️⭐️⭐️⭐️
[2] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. "Semantic image segmentation with deep convolutional nets and fully connected crfs." In ICLR, 2015. [pdf] ⭐️⭐️⭐️⭐️⭐️
[3] Pinheiro, P.O., Collobert, R., Dollar, P. "Learning to segment object candidates." In: NIPS. 2015. [pdf] ⭐️⭐️⭐️⭐️
[4] Dai, J., He, K., Sun, J. "Instance-aware semantic segmentation via multi-task network cascades." in CVPR. 2016 [pdf] ⭐️⭐️⭐️
[5] Dai, J., He, K., Sun, J. "Instance-sensitive Fully Convolutional Networks." arXiv preprint arXiv:1603.08678 (2016). [pdf] ⭐️⭐️⭐️
总结
本文总结了深度学习阅读论文的路线,并整理了127篇经典论文提供下载。
欢迎收藏分享。
我将本文放在我的数据科学的github中:
github地址:github.com/fengdu78/Dat
(*本文为AI科技大本营转载文章,转载请联系原作者)
◆
精彩推荐
◆
推荐阅读
阿里达摩院2020趋势第一弹:感知智能的“天花板”和认知智能的“野望”
基于强化学习的自动交易系统研究与发展综述
如何写出让同事膜拜的漂亮代码?
AMD或推出64核128线程HEDT平台;地平线即将推出新一代自动计算平台;阿里达摩院公布2020十大科技趋势……
2019最烂密码榜单出炉,教你设置神级密码!
腾讯回应“暴力裁员”;小米否认常程与联想签有竞业禁止条款;NumPy 1.16.6 发布 | 极客头条
GitHub Action 有风险?!
骗了马云 10 亿被骂 4 年后,院士王坚留下 4 条人生启示
万字长文回望2019:影响区块链行业发展的9大事件
你点的每个“在看”,我都认真当成了AI
相关文章:

c/c++面试
1. static在c,c中有什么不同点2. 堆和栈的区别3. 纯虚函数4. 指针和引用的区别5. 如果构造函数出错,如何处理?6. 对设计模式是否熟悉,用过哪些?7. c如何使用c中的函数,为什么?整理:1…

一种解决启动进程传递参数过长的方法
工作中,QA同学在测试我们程序的时候,发现在XP下,我们的A进程无法启动我们的B进程。而在Win7 64bit系统下功能正常。RD同学调试后,发现我们A进程中使用ShellExcute去启动了B进程(转载请指明出于breaksoftware的csdn博客…

Ubuntu“无法获得锁\加锁”解决方案
2019独角兽企业重金招聘Python工程师标准>>> 当你添加了源,更新源的时候,如果中途中断了更新,安装软件或者再次更新的时候就是出现如下提示, E: 无法获得锁 /var/lib/apt/lists/lock – open (11: 资源暂时不可用) E: …

一步一步学Silverlight 2系列(3):界面布局
概述 Silverlight 2 Beta 1版本发布了,无论从Runtime还是Tools都给我们带来了很多的惊喜,如支持框架语言Visual Basic, Visual C#, IronRuby, Ironpython,对JSON、Web Service、WCF以及Sockets的支持等一系列新的特性。《一步一步学Silverlig…

一种准标准CSV格式的介绍和分析以及解析算法
CSV是一种古老的数据传输格式,它的全称是Comma-Separated Values(逗号分隔值)。出生在那个标准缺失的蛮荒年代,CSV的标准一直(到2005年)是NULL——世间存在着N种CSV格式,它们自成体系࿰…
新战场路在何方——详解360金融数据中台之旅
作者 |360金融架构总监黄建庭出品 | AI科技大本营(ID:rgznai100)本文为CSDN即将推出的《新战场:决胜中台》专刊的第 4 篇文章。自阿里巴巴引入中台概念后,市场对中台的关注度持续“高烧”不退。作为企业的基础平台,数据…

oracle中的exists 和not exists 用法详解
有两个简单例子,以说明 “exists”和“in”的效率问题 1) select * from T1 where exists(select 1 from T2 where T1.aT2.a) ; T1数据量小而T2数据量非常大时,T1<<T2 时,1) 的查询效率高。 2) select * from T1 where T1.a in (select…

现代内存编号解读(转)
现代SDRAM、DDR SDRAM、DDR2 SDRAM三种主流内存颗粒的编号一、DDR SDRAM:HYNIX DDR SDRAM颗粒编号:HY XX X XX XX X X X X X X X — XX X1 2 3 4 5 6 7 8 9 10 11 12 — 13 14整个DDR SDRAM颗粒的编号,一共是由14…
被追捧为“圣杯”的深度强化学习已走进死胡同
作者 | 朱仲光编译 | 夕颜出品 | AI科技大本营(ID:rgznai1100)【导读】近年来,深度强化学习成为一个被业界和学术界追捧的热门技术,社区甚至将它视为金光闪闪的通向 AGI 的圣杯,大多数人都看好它未来发展的巨大潜力。但…
一种清除windows通知区域“僵尸”图标的方案——问题分析
通知区域名称有趣的历史 假如说到windows通知区域,可能很多人还是不清楚它是什么。如果改称Tray区域,可能有人就懂了。如果再白话点,叫它“托盘”或者“系统托盘”,可能会有更多的人猜到它是windows什么部位。现在我们揭开…

Apache2.4+Tomcat7集群搭建
一、安装jdk、Tomcat、Apache1.安装jdk1.7cd /home/java/software #把软件下载到/home/java/software目录下,将应用安装到/home/java目录下。 wget http://download.oracle.com/otn/java/jdk/7u80-b15/jdk-7u80-linux-x64.tar.gz tar -zxvf jdk-7u80-linux-x64.tar…
一种清除windows通知区域“僵尸”图标的方案——XP系统解决方案
XP下“僵尸”图标的解决方案 从《一种清除windows通知区域“僵尸”图标的方案——问题分析》(以后简称《问题分析》)一文中分析的通知区域结构可以看出,XP的通知区域结构是相对简单的。如果我们解决了XP下的问题,那么Win7上的问题…

《评人工智能如何走向新阶段》后记(再续12)
由AI科技大本营下载自视觉中国151. 新一代人工智能研究方向: (1)研究新一代人工智能基础理论(机理、模型和算法);(2)研发面向需求的共性技术(以神经网络和算法为核心、数据和硬件为基…

正则表达式测试工具 Regex Tester 的使用方法
2019独角兽企业重金招聘Python工程师标准>>> 正则表达式测试工具“RegexTester”,下载地址:http://www.oschina.net/p/regextester 一、关于本文 今天的工作中遇到了一些正则表达式,我需要检验它们是否正确,不过我对自…
一种清除windows通知区域“僵尸”图标的方案——Windows7系统解决方案
Windows7下“僵尸”图标的解决方案 从《一种清除windows通知区域“僵尸”图标的方案——问题分析》(以后简称《问题分析》)一文中分析的通知区域结构可以看出,Windows7的通知区域比XP通知区域多出了一个“临时”系统通知区域(转载…

《评人工智能如何走向新阶段》后记(再续13)
由AI科技大本营下载自视觉中国161. 引自美国科技媒体TNW记者对美欧企业主管与AI专家的访谈录摘要,谈到2020年AI的八大趋势: ①人工智能将使医疗保健更准确、成本更低; ②可解释性和信托及AI伦理将受到更多关注; ③在人工智能领…

在特定情况下的简单SSO实现方案
最近需要实现类似单点登录的功能。情况是这样的,最初在做网站A,做着做着,要做网站B了,要求与网站A完全分开作为两个应用,但用户数据要求与网站A保持一致,也要求用户在网站A登录后,转到网站B时不…

为创业者保驾护航 “无安全 不创业” 安全狗全国路演北京站
2019独角兽企业重金招聘Python工程师标准>>> 2015年上半年,网络安全问题毫无疑问已经成为了互联网行业关注的重点。在短短一年多的时间里,网络安全问题就从隐患转而呈现出爆发之势,即使是网易、支付宝、携程这样的互联网行业巨头也…
一种将快捷方式从开始菜单“常用应用”的中去除的方法
当我们安装一款软件的时候,这款软件的一些快捷方式可能被设置到开始菜单的“常用应用”区域。但是,如果是“卸载”快捷方式被“钉”到该区域,就会造成非常不好的体验。毕竟把“卸载”接口暴露得如此醒目,如同把该款软件的地狱大门…

ISA---不能访问网址或是多次刷新才能访问的解决方法一则
当你安装ISA2006在WINDOWS 2003 SERVER上,并打上SP2补订时。遇SNAT客户端不能访问WEB,但能PING通,能TELNET通,也能访问QQ或是MSN的问题时可以利用以下方法解决。同时,如果你遇到在此环境下,客户端访问外部网…

《评人工智能如何走向新阶段》后记(深谈人工智能发展前沿)
由AI科技大本营下载自视觉中国来自国内外的跟贴留言 深谈人工智能发展前沿 自从我们发表《评人工智能如何走向新阶段》一文以来,至今约5个月,引来了中外专家、草根们的大量跟贴留言(也有人转录他人的公开言论作为跟贴来发表的)。…

URAL 2027 URCAPL, Episode 1 (模拟)
题意:给你一个HxW的矩阵,每个点是一个指令,根据指令进行一系列操作。 题解:模拟 #include<cstdio> #include<algorithm> using namespace std;const int maxn 101; char G[maxn][maxn];int dx[] {-1,0,1, 0}; int d…

使用WinHttp接口实现HTTP协议Get、Post和文件上传功能
我实现了一个最新版本的接口,详见《实现HTTP协议Get、Post和文件上传功能——使用WinHttp接口实现》。还有基于libcurl实现的版本《实现HTTP协议Get、Post和文件上传功能——使用libcurl接口实现》。以下是原博文: 我们在做项目开发时,往往会…
收藏 | 一文带你总览知识蒸馏,详解经典论文
「免费学习 60 节公开课:投票页面,点击讲师头像」作者:凉爽的安迪来源 | 深度传送门(ID:deep_deliver)【导读】这是一篇关于【知识蒸馏】简述的文章,目的是想对自己对于知识蒸馏学习的内容和问题…

[工具推荐]用了TrueCrypt 再无难掩之隐
缘起:混在网络n多年了,手头总有些东西不想被别人看到的东西,由于小弟人品好,相貌佳,总有很多朋友喜欢用我的电脑玩啊玩啊……。 近日,冠希、柏芝等前辈以身示法,为我等上了很好一堂关于隐私保护…

利用phpmailer类邮件发送
<?phprequire("class.phpmailer.php"); //下载的文件必须放在该文件所在目录$mail new PHPMailer(); //建立邮件发送类$address "接收方邮箱"; //接收方地址$mail->IsSMTP(); //使用SMTP方式发送$…
据说这是大多数人【减肥】的真实写照
有句诗说得好 “冬天不减肥,夏天徒伤悲” 在这个人人储存脂肪的季节绝对是你甩掉脂肪的好时机(毕竟这是一个拼颜值的时代颜值是天生的,可是身材绝不能输)但是 据说大多数人的减肥经历其实是这样的减肥第一步管住嘴,迈开…
PE文件和COFF文件格式分析——导出表的应用——一种摘掉Inline钩子(Unhook)的方法
在日常应用中,某些程序往往会被第三方程序下钩子(hook)。如果被下钩子的进程是我们的进程,并且第三方钩子严重影响了我们的逻辑和流程,我们就需要把这些钩子摘掉(Unhook)。本件讲述一种在32位系统上,如何摘掉API钩子的思路和方法。…

设置列表字段为主键
转贴:Sample event handler to set a field as a pr imary key (enforce no duplicates) Got this as a request from a reader- how to prevent users from adding items with same titles as ones that already exist in the list. Codeusing System;using System.Collectio…

谁登录了你的linux
最近有一台数据库服务器自动重启。查了一下相关登录信息:查看linux下的用户登录日志,包括用户登录时所用的主机的ip:more /var/log/secure who /var/log/wtmp干了些什么? root账户下输入su - username 切换到username下输入 histo…