当前位置: 首页 > 编程日记 > 正文

I2C和SPI总线优缺点对比

IIC vs SPI现今,在低端数字通信应用领域,我们随处可见IIC (Inter-Integrated Circuit) 和 SPI (Serial Peripheral Interface)的身影。原因是这两种通信协议非常适合近距离低速芯片间通信。Philips(for IIC)和Motorola(for SPI) 出于不同背景和市场需求制定了这两种标准通信协议。IIC 开发于1982年,当时是为了给电视机内的CPU和外围芯片提供更简易的互联方式。电视机是最早的嵌入式系统之一,而最初的嵌入系统是使用内存映射(memory-mapped I/O)的方式来互联微控制器和外围设备的。要实现内存映射,设备必须并联入微控制器的数据线和地址线,这种方式在连接多个外设时需大量线路和额外地址解码芯片,很不方便并且成本高。为了节省微控制器的引脚和和额外的逻辑芯片,使印刷电路板更简单,成本更低,位于荷兰的Philips实验室开发了 ‘Inter-Integrated Circuit’,IIC 或 IIC ,一种只使用二根线接连所有外围芯片的总线协议。最初的标准定义总线速度为100kbps。

经历几次修订,主要是1995年的400kbps,1998的3.4Mbps。有迹象表明,SPI总线首次推出是在1979年,Motorola公司将SPI总线集成在他们第一支改自68000微处理器的微控制器芯片上。SPI总线是微控制器四线的外部总线(相对于内部总线)。与IIC不同,SPI没有明文标准,只是一种事实标准,对通信操作的实现只作一般的抽象描述,芯片厂商与驱动开发者通过data sheets和application notes沟通实现上的细节。SPI对于有经验的数字电子工程师来说,用SPI互联两支数字设备是相当直观的。SPI是种四根信号线协议(如图):

  • SCLK: Serial Clock (output from master);

  • MOSI; SIMO: Master Output, Slave Input(output from master);

  • MISO; SOMI: Master Input, Slave Output(output from slave);

  • SS: Slave Select (active low, outputfrom master).

SPI是[单主设备( single-master )]通信协议,这意味着总线中的只有一支中心设备能发起通信。当SPI主设备想读/写[从设备]时,它首先拉低[从设备]对应的SS线(SS是低电平有效),接着开始发送工作脉冲到时钟线上,在相应的脉冲时间上,[主设备]把信号发到MOSI实现“写”,同时可对MISO采样而实现“读”,如下图:

SPI有四种操作模式——模式0、模式1、模式2和模式3,它们的区别是定义了在时钟脉冲的哪条边沿转换(toggles)输出信号,哪条边沿采样输入信号,还有时钟脉冲的稳定电平值(就是时钟信号无效时是高还是低)。每种模式由一对参数刻画,它们称为时钟极(clock polarity)CPOL与时钟期(clock phase)CPHA。

[主从设备]必须使用相同的工作参数——SCLK、CPOL 和 CPHA,才能正常工作。如果有多个[从设备],并且它们使用了不同的工作参数,那么[主设备]必须在读写不同[从设备]间重新配置这些参数。以上SPI总线协议的主要内容。SPI不规定最大传输速率,没有地址方案;SPI也没规定通信应答机制,没有规定流控制规则。事实上,SPI[主设备]甚至并不知道指定的[从设备]是否存在。这些通信控制都得通过SPI协议以外自行实现。例如,要用SPI连接一支[命令-响应控制型]解码芯片,则必须在SPI的基础上实现更高级的通信协议。SPI并不关心物理接口的电气特性,例如信号的标准电压。在最初,大多数SPI应用都是使用间断性时钟脉冲和以字节为单位传输数据的,但现在有很多变种实现了连续性时间脉冲和任意长度的数据帧。IIC与SPI的单主设备不同,IIC 是多主设备的总线,IIC没有物理的芯片选择信号线,没有仲裁逻辑电路,只使用两条信号线—— ‘serial data’ (SDA) 和 ‘serial clock’ (SCL)。IIC协议规定:

  • 第一,每一支IIC设备都有一个唯一的七位设备地址;

  • 第二,数据帧大小为8位的字节;

  • 第三,数据(帧)中的某些数据位用于控制通信的开始、停止、方向(读写)和应答机制。

IIC 数据传输速率有标准模式(100 kbps)、快速模式(400 kbps)和高速模式(3.4 Mbps),另外一些变种实现了低速模式(10 kbps)和快速+模式(1 Mbps)。物理实现上,IIC 总线由两根信号线和一根地线组成。两根信号线都是双向传输的,参考下图。IIC协议标准规定发起通信的设备称为主设备,主设备发起一次通信后,其它设备均为从设备。

IIC 通信过程大概如下。首先,主设备发一个START信号,这个信号就像对所有其它设备喊:请大家注意!然后其它设备开始监听总线以准备接收数据。接着,主设备发送一个7位设备地址加一位的读写操作的数据帧。当所设备接收数据后,比对地址自己是否目标设备。如果比对不符,设备进入等待状态,等待STOP信号的来临;如果比对相符,设备会发送一个应答信号——ACKNOWLEDGE作回应。当主设备收到应答后便开始传送或接收数据。数据帧大小为8位,尾随一位的应答信号。主设备发送数据,从设备应答;相反主设备接数据,主设备应答。当数据传送完毕,主设备发送一个STOP信号,向其它设备宣告释放总线,其它设备回到初始状态。

基于IIC总线的物理结构,总线上的START和STOP信号必定是唯一的。另外,IIC总线标准规定SDA线的数据转换必须在SCL线的低电平期,在SCL线的高电平期,SDA线的上数据是稳定的。

在物理实现上,SCL线和SDA线都是漏极开路(open-drain),通过上拉电阻外加一个电压源。当把线路接地时,线路为逻辑0,当释放线路,线路空闲时,线路为逻辑1。基于这些特性,IIC设备对总线的操作仅有“把线路接地”——输出逻辑0。IIC总线设计只使用了两条线,但相当优雅地实现任意数目设备间无缝通信,堪称完美。我们设想一下,如果有两支设备同时向SCL线和SDA线发送信息会出现什么情况。基于IIC总线的设计,线路上不可能出现电平冲突现象。如果一支设备发送逻辑0,其它发送逻辑1,那么线路看到的只有逻辑0。也就是说,如果出现电平冲突,发送逻辑0的始终是“赢家”。总线的物理结构亦允许主设备在往总线写数据的同时读取数据。这样,任何设备都可以检测冲突的发生。当两支主设备竞争总线的时候,“赢家”并不知道竞争的发生,只有“输家”发现了冲突——当它写一个逻辑1,却读到0时——而退出竞争。10位设备地址任何IIC设备都有一个7位地址,理论上,现实中只能有127种不同的IIC设备。实际上,已有IIC的设备种类远远多于这个限制,在一条总线上出现相同的地址的IIC设备的概率相当高。为了突破这个限制,很多设备使用了双重地址——7位地址加引脚地址(external configuration pins)。IIC 标准也预知了这种限制,提出10位的地址方案。10位的地址方案对 IIC协议的影响有两点:

  • 第一,地址帧为两个字节长,原来的是一个字节;

  • 第二,第一个字节前五位最高有效位用作10位地址标识,约定是“11110”。

除了10位地址标识,标准还预留了一些地址码用作其它用途,如下表:

时钟拉伸在 IIC 通信中,主设备决定了时钟速度。因为时钟脉冲信号是由主设备显式发出的。但是,当从设备没办法跟上主设备的速度时,从设备需要一种机制来请求主设备慢一点。这种机制称为时钟拉伸,而基于I²C结构的特殊性,这种机制得到实现。当从设备需要降低传输的速度的时候,它可以按下时钟线,逼迫主设备进入等待状态,直到从设备释放时钟线,通信才继续。

高速模式原理上讲,使用上拉电阻来设置逻辑1会限制总线的最大传输速度。而速度是限制总线应用的因素之一。这也说明为什么要引入高速模式(3.4 Mbps)。在发起一次高速模式传输前,主设备必须先在低速的模式下(例如快速模式)发出特定的“High Speed Master”信号。为缩短信号的周期和提高总线速度,高速模式必须使用额外的I/O缓冲区。另外,总线仲裁在高速模式下可屏蔽掉。更多的信息请参与总线标准文档。

IIC vs SPI: 哪位是赢家?我们来对比一下IIC 和 SPI的一些关键点:第一,总线拓扑结构/信号路由/硬件资源耗费IIC 只需两根信号线,而标准SPI至少四根信号,如果有多个从设备,信号需要更多。一些SPI变种虽然只使用三根线——SCLK, SS和双向的MISO/MOSI,但SS线还是要和从设备一对一根。另外,如果SPI要实现多主设备结构,总线系统需额外的逻辑和线路。用IIC 构建系统总线唯一的问题是有限的7位地址空间,但这个问题新标准已经解决——使用10位地址。从第一点上看,IIC是明显的大赢家。

第二,数据吞吐/传输速度如果应用中必须使用高速数据传输,那么SPI是必然的选择。因为SPI是全双工,IIC 的不是。SPI没有定义速度限制,一般的实现通常能达到甚至超过10 Mbps。IIC 最高的速度也就快速+模式(1 Mbps)和高速模式(3.4 Mbps),后面的模式还需要额外的I/O缓冲区,还并不是总是容易实现的。

第三,优雅性IIC 常被称更优雅于SPI。公正的说,我们更倾向于认为两者同等优雅和健壮。IIC的优雅在于它的特色——用很轻盈的架构实现了多主设备仲裁和设备路由。但是对使用的工程师来讲,理解总线结构更费劲,而且总线的性能不高。SPI的优点在于它的结构相当的直观简单,容易实现,并且有很好扩展性。SPI的简单性不足称其优雅,因为要用SPI搭建一个有用的通信平台,还需要在SPI之上构建特定的通信协议软件。也就是说要想获得SPI特有而IIC没有的特性——高速性能,工程师们需要付出更多的劳动。另外,这种自定的工作是完全自由的,这也说明为什么SPI没有官方标准。IIC和SPI都对低速设备通信提供了很好的支持,不过,SPI适合数据流应用,而IIC更适合“字节设备”的多主设备应用。

小结在数字通信协议簇中,IIC和SPI常称为“小”协议,相对Ethernet, USB, SATA, PCI-Express等传输速度达数百上千兆字节每秒的总线。但是,我们不能忘记的是各种总线的用途是什么。“大”协议是用于系统外的整个系统之间通信的,“小”协议是用于系统内各芯片间的通信,没有迹象表明“大”协议有必要取代“小”协议。IIC和SPI的存在和流行体现了“够用就好”的哲学。回应文首,IIC和SPI如此的流行,它是任何一位嵌入式工程师必备的工具。

相关文章:

查看CentOS的网络带宽出口

检查维护系统的时候,经常会要查看服务器的网络端口是多大的,所以需要用到Linux的一个命令。 如何查看CentOS的网络带宽出口多大?可以用下面的命令来查看。 # ethtool eth0 前面是命令,后面跟的是设备名,如果对外连接的…

【ACM】删数问题(待更)

【描述】键盘输入一个正整数N,去掉其中任意S个数字后剩下的数字按原左右次序将组成一个新的正整数。编程对给定的N和S寻找一种方案使得剩下的数字组成的新数最小。(N不超过240位,N>S) 【输入】两行,第一行&#xf…

2019,商业智能的10大未来趋势

2019独角兽企业重金招聘Python工程师标准>>> 当我们深思熟虑接下来会发生什么时,Tableau 收集了来自内外部专家的广泛意见。内部专家们把握着行业的脉搏,并与世界各地成千上万的客户接洽交流;外部专家们则与众多数据团队并肩作战&…

c语言信号机制以及中断

用户态到内核态切换途径: 1:系统调用 2:中断 3:异常 中断类型分为如下两大类: 一、强迫性中断:正在运行的程序所不期望的,来自硬件故障或外部请求。 1、I/O 中断:来自…

【ACM】纸牌搭建

【题目】现有N张扑克牌&#xff0c;最多可以搭建几层 【题目分析】找到通项公式 f[ i ]f[ i-1 ]3*i-1。先打出表&#xff0c;再二分搜索。不断缩小范围。 #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using na…

DataBase 之 拉链表结构设计

一、概念 拉链表是针对数据仓库设计中表存储数据的方式而定义的&#xff0c;顾名思义&#xff0c;所谓拉链&#xff0c;就是记录历史。记录一个事物从开始&#xff0c;一直到当前状态的所有变化的信息。 在历史表中对客户的一生的记录可能就这样几条记录&#xff0c;避免了按每…

给每个函数写一个记录日志的功能.

# 功能要求: 每一次调用函数之前, 要将函数名称, 时间节点记录到log的日志中.# 所需模块:# import time## def logger(fn):# def inner(*args, **kwargs):# # fn.__name__ # 函数名字# f open("log", mode"a", encoding"utf-8&q…

c如何正常中断一个运行的线程

最近开发一些东西&#xff0c;线程数非常之多&#xff0c;当用户输入CtrlC的情形下&#xff0c;默认的信号处理会把程序退出&#xff0c;这时有可能会有很多线程的资源没有得到很好的释放&#xff0c;造成了内存泄露等等诸如此类的问题&#xff0c;本文就是围绕着这么一个使用场…

Vertica 分区表设计(续)

在上篇Vertica 分区表设计中&#xff0c;已经提过了Vertica的分区表创建和分区删除&#xff0c;但举例上并不系统&#xff0c; 本篇文章将系统的对分区表设计及后续的删除分区进行讲解。 概述&#xff1a;Vertica分区表&#xff08;天和月&#xff09;创建以及删除分区 1.分区表…

【ACM】杭电OJ 1181

http://acm.hdu.edu.cn/showproblem.php?pid1181 DFS搜索&#xff08;递归函数&#xff09; #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cstdlib> using namespace std; char s[1000]; int k…

最热开源无服务器函数:五大Fission架构参考

“无服务器”现在是极具诱惑的技术趋势&#xff0c;没有什么比管理服务器更让人痛苦。亚马逊、微软和谷歌都在云中提供无服务器专有接口。相较于这些云供应商的商业化产品&#xff0c;开源无服务器架构可免于被云厂商锁定&#xff0c;但要以牺牲云便利性和易用性为代价。近一年…

高德API+Python解决租房问题

项目简介&#xff1a;编写Python脚本爬取某租房网站的房源信息&#xff0c;利用高德的 js API 在地图上标出房源地点&#xff0c;划出距离工作地点1小时内可到达的范围&#xff0c;附上公交路径规划功能查看不同路径的用时。 本教程由ekCit发布在实验楼&#xff0c;完整教程及在…

SIMD向量化运算

随着机器学习等人工智能技术的飞速发展&#xff0c;矩阵乘法的应用越来越多&#xff0c;intel芯片先后提供了不同系列的向量指令&#xff0c;包括mmx、sse、avx等&#xff0c;支持simd操作。后来为了更好地支持矩阵乘法&#xff0c;又增加了fma&#xff08;Fused Multiply-Add&…

【数据结构】二叉树及其相关操作

二叉树的定义 二叉树是一个由结点构成的有限集合&#xff0c;这个集合或者为空&#xff0c;或者由一个根节点及两棵互不相交的分别称作这个根节点的左子树和右子树的二叉树组成。 二叉树并非一般的树形结构的特殊形式&#xff0c;它们是两种不同的数据结构。 二叉树与一般树…

函数节流与函数防抖

什么是函数节流与函数防抖 举个栗子&#xff0c;我们知道目前的一种说法是当 1 秒内连续播放 24 张以上的图片时&#xff0c;在人眼的视觉中就会形成一个连贯的动画&#xff0c;所以在电影的播放&#xff08;以前是&#xff0c;现在不知道&#xff09;中基本是以每秒 24 张的速…

makefile 中 =, :=, ?=, +=的区别

在Makefile中我们经常看到 : ? 这几个赋值运算符&#xff0c;那么他们有什么区别呢&#xff1f;我们来做个简单的实验 新建一个Makefile&#xff0c;内容为&#xff1a; ifdef DEFINE_VRE VRE “Hello World!” else endif ifeq ($(OPT),define) VRE ? “Hello W…

ubuntu 编译源码包 dsc diff.gz orig.tar.gz

2019独角兽企业重金招聘Python工程师标准>>> 1&#xff09; 在获取源码包之前&#xff0c;确保在软件源配置文件/etc/apt/sources.list中添加了deb-src项以tree实用程序&#xff08;以树型结构获取目录树&#xff09;为例&#xff0c;介绍Ubuntu中如何管理源码包&am…

【ACM】杭电OJ 2552

本来还查了atan 和 atan2 的用法&#xff0c;结果总是WA 看了解析之后才知道原来是要公式推导&#xff0c;最后得出所求的式子是一个等式&#xff0c;结果为1。 所以&#xff0c;以后出类似与数学公式的题&#xff0c;可能是要手算推到&#xff0c;在输出特定的结果。&#x…

蚂蚁金服天街:OceanBase 在大促 5 年来的技术演进

为了与金融从业者、科技从业者共同探讨金融 业务的深层次问题&#xff0c;蚂蚁金服联手 TGO 鲲鹏会&#xff0c;在 12 月 8 日举办了「走进蚂蚁金服&#xff1a;双十一背后的蚂蚁金服技术支持」活动。蚂蚁金服高级技术专家天街为大家分享了《蚂蚁双 11 大促 OceanBase 核心技术…

OTA升级flash分区

什么是在线OTA升级 - OTA是Over-the-Air的简写&#xff0c;空中下载技术的意思。 - OTA在线升级在日常消费电子产品中很常见&#xff0c;比如手机&#xff0c;机顶盒等&#xff0c;通过网络&#xff0c;下载升级数据包&#xff0c;更新操作系统等底层固件进行…

MD5与Base64的思考

MD5加密是对任意长的数据使用MD5哈稀算法散列为4个32位组,若格式化为ASCII字符则为16字符,若格式化16进制表示,则为32字符. (MD5的具体算法请参阅相关书籍和资料)MD5广泛用于数据校验和完整性检验.且不可逆.理论上为抗碰撞的在2004年8月17日,MD5遭遇重创,山东大学的王小云做了…

【ACM】杭电OJ 1076

数组要开的大一些&#xff0c;一开始数组只开到100005&#xff0c;就显示了错误的数据 AC代码&#xff1a; #include <iostream> #include <cstring> using namespace std; const int maxn 10000005; int a[maxn]; int main () {int i;memset(a,0,sizeof(a));fo…

IDEA ctrl+alt+L 格式化快捷键无效时解决

这几天发现自己Intellij IDEA ctrlaltL格式化代码无效 设置里面按照快捷键搜索 按了 ctrlaltL 也没反应 但是我设置的确实是默认的 ctrlaltL 最后终于找到了问题所在 原来是开网易云音乐的锅 网易云会有一个全局的快捷键ctrlaltL跟idea冲突 去网易云关了就好了 转载于:https:/…

gpio pin和pad的区别

PIN指芯片封装好后的管脚&#xff0c;即用户看到的管脚&#xff1b; PAD是硅片的管脚&#xff0c;是封装在芯片内部的&#xff0c;用户看不到。 PAD到PIN之间还有一段导线连接的。

【ACM】杭电OJ 1013

WA代码 输入很大的数的时候会输出“-1”&#xff0c;所以考虑用字符数组来储存输入的数据。 #include <iostream> #include <cstring> #include <cstdio> using namespace std; long long sum; long long fun (int n) {sum0;if(n<9) return n;while(n){s…

\\s+ split替换

出自&#xff1a; http://www.tuicool.com/articles/vy2ymm 详解 "\\s" 正则表达式中\s匹配任何空白字符&#xff0c;包括空格、制表符、换页符等等, 等价于[ \f\n\r\t\v] \f -> 匹配一个换页\n -> 匹配一个换行符\r -> 匹配一个回车符\t -> 匹配一个制表…

ubuntu18.04下双机驱动调试

环境搭建&#xff1a;https://blog.51cto.com/haidragon/2337256这里要先说下如果要下内核断点要先在编译前去掉写保护&#xff0c;但是下自己写的驱动可以不要。第二个最好编译完后压缩vm系统文件然后复制一份&#xff0c;这样就调试机与被调试机环境一模一样&#xff0c;同样…

如何独立开发一个网络请求框架

&#xff08;原创出处为本博客&#xff1a;http://www.cnblogs.com/linguanh/&#xff09; 目录&#xff1a; 前言 准备工作 开发模式 开发原则 线程 高并发 TCP/UDP 本类介绍 开发选择 功能列表 优点 拓展 完整代码 用法例子 前言&#xff1a; 已开源到GitHub&#xff0c;希望…

【ACM】杭电OJ 1284(待更)

#include<iostream> using namespace std; int main(){int n;while(cin>>n){int ans0; for(int i0;i<n/3;i){ //对3的个数进行枚举 int temp(n-3*i); //除了这i个3之外剩余的钱数 //temp/2,剩余部分换成2的总种类数&#xff0c;anstemp/21; //这…

c语言头文件中定义inline static相关函数的优劣

头文件中常见static inline函数&#xff0c;于是思考有可能遇到的问题&#xff0c;如头文件经常会被包含会不会产生很多副本&#xff1f;网上说法不一。于是自己验证。经过arm-none-eabi-gcc下测试后得出结论。 inline 关键字实际上仅是建议内联并不强制内联&#xff0c;gcc中O…