当前位置: 首页 > 编程日记 > 正文

阅读笔记 CCL: Cross-modal Correlation Learning with Multi-grained Fusion by Hierarchical Network

总结

CCL: Cross-modal Correlation Learning with Multi-grained Fusion by Hierarchical Network

Yuxin Peng, Jinwei Qi, Xin Huang and Yuxin Yuan

常见方法

使用深度神经网络(DNN)的跨模态检索大体分为两个步骤:

1 The first learning stage is to generate separate representation for each modality.

2 The second learning stage is to get the cross-modal common representation.

前人缺点

1 第一步中未考虑模型间的联系

2 第二步loss过于简单,也没有考虑模型间的联系

3 未考虑细粒度的影响

In the first learning stage, they only model intra-modality correlation, but ignore inter-modality one which can provide rich complementary context for learning better separate representation;

in the second learning stage, they only adopt shallow network structures with single-loss regularization, which ignores the intrinsic relevance of intra-modality and inter-modality correlation, so cannot effectively exploit and balance them to improve generalization performance;

only original instances are considered while the complementary fine-grained clues provided by their patches are ignored.

本文贡献点

针对前人缺点,作者提出了相对应的方法加以优化(显然前人缺点就是本文优点)。

(1) Cross-modal correlation exploiting.  In the first learning stage, CCL exploits multi-level association with joint optimization to preserve the complementary context from intra-modality and inter-modality correlation simultaneously.

(2) Multi-task learning.  In the second learning stage, a multi-task learning strategy is designed to adaptively balance the intra-modality semantic category constraints and inter-modality pairwise similarity constraints.

(3) Multi-grained fusion.  CCL adopts multi-grained modeling, which fuses the coarse-grained instances and fine-grained patches to make cross-modal correlation more precise.

本文在三个数据集上与九种方法进行了比较证明所提方法的优越性。

本文方法

网络结构如上图所示。

A.   The First Learning Stage: Multi-grained Fusion with Joint Optimization

1)    Coarse-grained learning with original instances

两层DBN。First, two types of Deep Belief Network (DBN) [35] are used to model the distribution over the features of each modality, where Gaussian Restricted Boltzmann Machine (RBM) is adopted to model the image instances and Replicated Softmax model [29] is for text instances. We define the probability functions of each DBN as follows:

Then we simultaneously model intra-modality and inter-modality correlation by joint optimization for Q(i) of image instance and Q(t) of text instance. We minimize the following loss function to jointly optimize the reconstruction learning error and correlation learning error:

2)    Fine-grained learning with patches

We first divide each original image and text instance into several patches.

细粒度的具体分割方法:

图像分割:Specifically, we adopt selective search [36] to extract several region proposals, which can find the visual objects in the image instance containing rich fine-grained information. For the image, all 3 datasets share the same segmentation method. Selective search [36] is adopted to divide the image into several region proposals and then up to largest 10 patches.

文本分割(根据数据集不同而不同):For text, the segmentation is performed according to the form of text, where the text is divided into paragraphs, sentences or words. are automatically selected. Besides, the texts vary among different datasets, so different segmentation methods are adopted. The texts of Wikipedia dataset are in the form of articles with several paragraphs, thus we divide them by paragraph. The texts in Pascal Sentence are made up by several sentences, so it is divided by each sentence. Since the text instances in NUSWIDE-10k dataset are made up of several tags which has no context relationship, we divide them by word if the number of words is less than 4, otherwise divide them into 4 patches for uniformity where each patch has the same number of words. It is noted that for each dataset, the feature extraction on the patches is same as that on the original instances.

同粗粒度一样,细粒度也采用两层DBN。Similar with the original instances, a two-pathway network structure is constructed with two types of DBN adopted over the features extracted from the patches of image and text. For the patches within one original instance, average fusion is adopted to combine their representations obtained from DBN, and the results are denoted as U (i) and U (t). Then we link the two pathway network at the code layer, and minimize the following loss function to model intra-modality and inter-modality correlation with joint optimization:

3) Multi-grained Fusion

On the top of joint RBM, a three-layer feed-forward network is used for further optimization with softmax loss.

B.    The Second Learning Stage: Multi-task Cross-modal Correlation Learning

Specifically, a neighborhood graph G = (V; E) is constructed in a mini-batch of data for one iteration, where the vertices V represent the image and text instances, and E is the similarity matrix between data of two modalities according to their labels, which is defined as follows:

Thus, the contrastive loss between the image and text pairs is defined to model the pairwise similar and dissimilar constraints as follows:

Then, for intra-modality semantic category constraints, a classification process is employed to exploit the intrinsic semantic information within each modality, which can classify data of each modality into one of n categories. Thus, we present intra-modality semantic category constraints as an n-way softmax layer, where n is number of categories. Cross entropy loss is minimized as follows:

严重怀疑文章中这个式子多写了一个负号。

where the predicted probability distribution is denoted as p^ i, and pi is the target probability distribution. By minimizing the above loss function, the semantically discrimination ability of common representation can be greatly enhanced.

具体的参数设置(神经元数目设定等依据数据集而改变,文章在实验部分以Wikipedia为例提到过)。

DBN、RBM、feed-back等实现作者均使用了deepnet:

https://github.com/nitishsrivastava/deepnet

第二部分的三层全连接层使用caffe[41]实现。

实验

文章中的实验可分为四个方面:

1 文章中实验将手动提取特征和CNN提取特征进行了比较。

2 文章中使用自己的CCL与九种其他方法就两方面进行了比较:一方面是跨模态检索,即文搜图或图搜文;另一方面是单一模态搜索全部模态。

3 文章就粗粒度、细粒度进行了单独实验作为对比。

4 文章中就第一部分是否使用联合损失约束进行了实验比对。

数据集

Wikipedia dataset [7] is the most widely-used dataset for cross-modal retrieval task. This dataset consists of 2,866 image/text pairs of 10 categories, and is randomly divided as follows: 2,173 pairs for training, 231 pairs for validation and 462 pairs for testing.

NUS-WIDE-10K dataset [38] is generated from NUSWIDE dataset. NUS-WIDE dataset consists of about 270,000 images with their tags categorized into 81 categories. While NUS-WIDE-10k dataset has totally 10,000 image/text pairs

selected evenly from the 10 largest categories of NUS-WIDE dataset, which are animal, cloud, flower, food, grass, person, sky, toy, water and window. The dataset are split into three subsets: Training set with 8,000 pairs, testing set with 1,000 pairs and validation set with 1,000 pairs.

Pascal Sentence dataset [39] is generated from 2008 PASCAL development kit. This dataset contains 1,000 images which are evenly categorized into 20 categories, and each image has 5 corresponding sentences which makes up one document. For each category, 40 documents are selected for training, 5 documents for testing and 5 documents for validation.

特征提取

图片手动特征提取根据数据集而变化,均是由三种不同的特征串联而成。文本特征均使用BOW。

CNN特征使用VGGNet[40]的fc7层的4096维特征。

对比方法

• CCA [18] learns project matrices to maximize the correlation between the projected features of different modalities in a common space.
• CFA [22] minimizes the Frobenius norm between the data of different modalities after projecting them into one common space.
• KCCA [19] uses kernel function to project the features into a higher-dimensional space, and then learns a common space by CCA. In the experiments, we use not only Gaussian kernel (Gaussian) as [19], but also an additional polynomial kernel (Poly).
• JRL [10] learns a common space by using semantic information, with semi-supervised regularization and sparse regularization.
• LGCFL [37] jointly learns basis matrices of different modalities, by using a local group based priori in the formulation to fully take advantage of popular block based features.
• Bimodal AE [17] is based on a deep autoencoder network. Multiple instances are input into the network to learn common representation at the joint layer, which also has the ability to reconstruct both modalities.
• Multimodal DBN [16] first adopts two separate DBN to model each modality separately, and then learns the joint representation by using a joint RBM on the top of two DBN.
• Corr-AE [12] consists of two autoencoder networks coupled at the code layer to simultaneously model the reconstruction error and correlation loss. It should be noted that Corr-AE has two extensions as discussed in Section II, and in the experiments we compare with the best results of the three models.
• CMDN (our previous conference paper [13]) adopts multiple deep networks to generate separate representation and learns common representation with a stacked network.

评判标准

mean average precision (MAP)

n:查询结果总数

R:相关总数

R_k:前k个中的相关数

rel_k:第k个相关则为1,反之为0

实验结果

(1)   

CCL:以图搜文 以文搜图 即BI-MODEL

(2)   
CCL:以文(或图)搜索全部结果 即 ALL-MODEL

KCCA(Poly)说明CNN特征不一定绝对会取得更好的效果。

(3)   
不同数据集下粒度的影响

(4)   
不同数据集下是否加入联合约束的影响


参考文献

[1] Y. Hu, X. Cheng, L.-T. Chia, X. Xie, D. Rajan, and A.-H. Tan,

“Coherent phrase model for efficient image near-duplicate retrieval,”

IEEE Transactions on Multimedia (TMM), vol. 11, no. 8, pp. 1434–

1445, 2009.

[2] Y. Peng and C.-W. Ngo, “Clip-based similarity measure for querydependent clip retrieval and video summarization,” IEEE Transactions

on Circuits and Systems for Video Technology (TCSVT), vol. 16, no. 5,

pp. 612–627, 2006.

[3] A. Znaidia, A. Shabou, H. Le Borgne, C. Hudelot, and N. Paragios,

“Bag-of-multimedia-words for image classification,” in International

Conference on Pattern Recognition (ICPR), 2012, pp. 1509–1512.

[4] Y. Liu, W.-L. Zhao, C.-W. Ngo, C.-S. Xu, and H.-Q. Lu, “Coherent bagof audio words model for efficient large-scale video copy detection,” in

ACM International Conference on Image and Video Retrieval (CIVR),

2010, pp. 89–96.

[5] Y. Zhuang, Y. Yang, and F. Wu, “Mining semantic correlation of heterogeneous multimedia data for cross-media retrieval,” IEEE Transactions

on Multimedia (TMM), vol. 10, no. 2, pp. 221–229, 2008.

[6] Y. Yang, Y. Zhuang, F. Wu, and Y. Pan, “Harmonizing hierarchical

manifolds for multimedia document semantics understanding and crossmedia retrieval,” IEEE Transactions on Multimedia (TMM), vol. 10,

no. 3, pp. 437–446, 2008.

[7] N. Rasiwasia, J. Costa Pereira, E. Coviello, G. Doyle, G. R. Lanckriet, R. Levy, and N. Vasconcelos, “A new approach to cross-modal

multimedia retrieval,” in ACM International Conference on Multimedia

(ACM-MM), 2010, pp. 251–260.

[8] P. Daras, S. Manolopoulou, and A. Axenopoulos, “Search and retrieval

of rich media objects supporting multiple multimodal queries,” IEEE

Transactions on Multimedia (TMM), vol. 14, no. 3, pp. 734–746, 2012.

[9] L. Zhang, B. Ma, G. Li, Q. Huang, and Q. Tian, “Cross-modal retrieval

using multi-ordered discriminative structured subspace learning,” IEEE

Transactions on Multimedia (TMM), vol. PP, no. 99, pp. 1–1, 2016.

[10] X. Zhai, Y. Peng, and J. Xiao, “Learning cross-media joint representation

with sparse and semi-supervised regularization,” IEEE Transactions on

Circuits and Systems for Video Technology (TCSVT), vol. 24, pp. 965–

978, 2014.

[11] Y. Gong, Q. Ke, M. Isard, and S. Lazebnik, “A multi-view embedding

space for modeling internet images, tags, and their semantics,” International Journal of Computer Vision (IJCV), vol. 106, no. 2, pp. 210–233,

2014.

[12] F. Feng, X. Wang, and R. Li, “Cross-modal retrieval with correspondence

autoencoder,” in ACM International Conference on Multimedia (ACMMM), 2014, pp. 7–16.

[13] Y. Peng, X. Huang, and J. Qi, “Cross-media shared representation by

hierarchical learning with multiple deep networks,” in International Joint

Conference on Artificial Intelligence (IJCAI), 2016, pp. 3846–3853.

[14] G. Andrew, R. Arora, J. A. Bilmes, and K. Livescu, “Deep canonical

correlation analysis,” in International Conference on Machine Learning

(ICML), 2013, pp. 1247–1255.

[15] F. Yan and K. Mikolajczyk, “Deep correlation for matching images

and text,” in Conference on Computer Vision and Pattern Recognition

(CVPR), 2015, pp. 3441–3450.

[16] N. Srivastava and R. Salakhutdinov, “Learning representations for multimodal data with deep belief nets,” in International Conference on

Machine Learning (ICML) Workshop, 2012.

[17] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng,

“Multimodal deep learning,” in International Conference on Machine

Learning (ICML), 2011, pp. 689–696.

[18] H. Hotelling, “Relations between two sets of variates,” Biometrika, pp.

321–377, 1936.

[19] D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor, “Canonical correlation ´

analysis: An overview with application to learning methods,” Neural

Computation, vol. 16, no. 12, pp. 2639–2664, 2004.

[20] H. Bredin and G. Chollet, “Audio-visual speech synchrony measure

for talking-face identity verification,” in International Conference on

Acoustics, Speech and Signal Processing (ICASSP), vol. 2, 2007, p.

233.

[21] B. Klein, G. Lev, G. Sadeh, and L. Wolf, “Associating neural word

embeddings with deep image representations using fisher vectors,” in

Conference on Computer Vision and Pattern Recognition (CVPR), 2015,

pp. 4437–4446.

[22] D. Li, N. Dimitrova, M. Li, and I. K. Sethi, “Multimedia content

processing through cross-modal association,” in ACM International

Conference on Multimedia (ACM-MM), 2003, pp. 604–611.

[23] Y. Hua, S. Wang, S. Liu, A. Cai, and Q. Huang, “Cross-modal correlation

learning by adaptive hierarchical semantic aggregation,” IEEE Transactions on Multimedia (TMM), vol. 18, no. 6, pp. 1201–1216, 2016.

[24] X. Zhai, Y. Peng, and J. Xiao, “Heterogeneous metric learning with joint

graph regularization for cross-media retrieval,” in AAAI Conference on

Artificial Intelligence (AAAI), 2013.

[25] K. Wang, R. He, L. Wang, W. Wang, and T. Tan, “Joint feature selection

and subspace learning for cross-modal retrieval,” IEEE Transactions on

Pattern Analysis and Machine Intelligence (TPAMI), vol. 38, no. 10, pp.

2010–2023, 2016.

[26] D. Wang, P. Cui, M. Ou, and W. Zhu, “Learning compact hash codes

for multimodal representations using orthogonal deep structure,” IEEE

Transactions on Multimedia (TMM), vol. 17, no. 9, pp. 1404–1416,

2015.

[27] L. Pang, S. Zhu, and C. Ngo, “Deep multimodal learning for affective analysis and retrieval,” IEEE Transactions on Multimedia (TMM),

vol. 17, no. 11, pp. 2008–2020, 2015.

[28] D. Wang, P. Cui, M. Ou, and W. Zhu, “Deep multimodal hashing

with orthogonal regularization,” in International Joint Conference on

Artificial Intelligence (IJCAI), 2015, pp. 2291–2297.

[29] R. Salakhutdinov and G. E. Hinton, “Replicated softmax: an undirected

topic model,” in Conference on Neural Information Processing Systems

(NIPS), 2009, pp. 1607–1614.

[30] P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol, “Extracting and

composing robust features with denoising autoencoders,” in International Conference on Machine Learning (ICML), 2008, pp. 1096–1103.

[31] Y. Sun, X. Wang, and X. Tang, “Deep learning face representation by

joint identification-verification,” vol. 27, 2014, pp. 1988–1996.

[32] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards realtime object detection with region proposal networks,” in Conference on

Neural Information Processing Systems (NIPS), 2015, pp. 91–99.

[33] A. H. Abdulnabi, G. Wang, J. Lu, and K. Jia, “Multi-task CNN model for

attribute prediction,” IEEE Transactions on Multimedia (TMM), vol. 17,

no. 11, pp. 1949–1959, 2015.

[34] Y. Peng, X. Zhai, Y. Zhao, and X. Huang, “Semi-supervised crossmedia feature learning with unified patch graph regularization,” IEEE

Transactions on Circuits and Systems for Video Technology (TCSVT),

vol. 26, no. 3, pp. 583–596, 2016.

[35] G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learning algorithm for

deep belief nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554,

2006.

[36] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders, “Selective search for object recognition,” International Journal of

Computer Vision (IJCV), vol. 104, no. 2, pp. 154–171, 2013.

[37] C. Kang, S. Xiang, S. Liao, C. Xu, and C. Pan, “Learning consistent feature representation for cross-modal multimedia retrieval,” IEEE

Transactions on Multimedia (TMM), vol. 17, no. 3, pp. 370–381, 2015.

[38] T. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng, “Nus-wide: a

real-world web image database from national university of singapore,”

in ACM International Conference on Image and Video Retrieval (CIVR),

2009, pp. 1–9.

[39] A. Farhadi, S. M. M. Hejrati, M. A. Sadeghi, P. Young, C. Rashtchian,

J. Hockenmaier, and D. A. Forsyth, “Every picture tells a story: Generating sentences from images,” in European Conference on Computer

Vision (ECCV), 2010, pp. 15–29.

[40] M. Simon, E. Rodner, and J. Denzler, “Imagenet pre-trained models with

batch normalization,” arXiv preprint arXiv:1612.01452, 2016.

[41] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,

S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for

fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

转载于:https://www.cnblogs.com/xiangfeidemengzhu/p/6953206.html

相关文章:

Matlab与线性代数--矩阵的LU分解

本图文详细介绍了Matlab中有关矩阵LU分解的操作。

Silverlight的企业应用

今天在Terry Lee的博客中看到《Silverlight 3 -瞥》,之后找到Scott的原文《Update on Silverlight 2 - and a glimpse of Silverlight 3》,发现在Scott的文章里提到了K2的Blackpoint。 Silverlight已经发布了一段时间,但很少听说…

leetcode--移除元素--python

文章目录题目题目详情示例说明解题代码思路代码小知识运行结果最佳方案题目 题目详情 给定一个数组 nums 和一个值 val,你需要原地移除所有数值等于 val 的元素,返回移除后数组的新长度。 不要使用额外的数组空间,你必须在原地修改输入数组…

翼の折れた天使たち

人は、時に強がってしまうものだ。 本当は、苦しいのに本当は、甘えたいのにでも、それを素直に表すことができない。ただ、怖いのは、自分を追い込んでしまうこと。そして、悲しいのは、後戻りができなくなること。だから、そうなる前に、自分の弱さを認めてほしい。それは、恥…

小型网站到大型网站-Mysql优化

2019独角兽企业重金招聘Python工程师标准>>> 背景 好的大型网站都是从小型网站慢慢演变来的,都不是一步就设计好的。现在的淘宝,03年创建的时候它也是只有一台服务器,使用的是我们目前还经常使用的lamp架构(LinuxApach…

Matlab与线性代数--矩阵的正交分解

本图文介绍了Matlab中对于QR分解的操作。

leetcode--搜索插入位置--python

文章目录题目题目详情示例解题思路思路代码运行结果最佳方案题目 题目详情 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 你可以假设数组中无重复元素。 示…

SQL学习笔记-嵌套查询

嵌套查询定义: 1 .指在一个外层查询中包含有另一个内层查询。其中外层查询称为主查询,内层查询称为子查询。 2 .SQL允许多层嵌套,由内而外地进行分析,子查询的结果作为主查询的查询条件 3 .子查询中一般不使用order by子句&#x…

Matlab与线性代数--矩阵的Cholesky分解

本图文介绍了Matlab对正交矩阵的Cholesky分解操作。

IIS 7启用static JSON文件能POST方法

<?xml version"1.0" encoding"UTF-8"?> <configuration> <system.webServer><handlers><add name"JSON" path"*.json" verb"GET,POST" modules"IsapiModule" scriptProcessor"…

leetcode--在排序数组中查找元素的第一个和最后一个位置--python

文章目录题目题目详情示例解题思路思路代码运行结果最佳方案题目 题目详情 给定一个按照升序排列的整数数组 nums&#xff0c;和一个目标值 target。找出给定目标值在数组中的开始位置和结束位置。 你的算法时间复杂度必须是 O(log n) 级别。 如果数组中不存在目标值&#…

Matlab与线性代数--矩阵的奇异值和奇异值分解

本图文介绍了Matlab中有关奇异值与奇异值分解的操作。

那些进入 Alexa 排名前 250 的 WordPress 网站

目前在全球的所有网站中&#xff0c;WordPress占据了接近25%的市场份额&#xff0c;几乎每四个网站中就有一个是使用WordPress搭建的。那么&#xff0c;在全球访问量前250个网站中&#xff0c;又有多少个是使用WordPress搭建的呢&#xff1f;最近&#xff0c;WPMU DEV网站对此进…

转帖:硬盘生产全过程(图)

from&#xff1a;http://www.eygle.com/archives/2004/12/aeeaoaooieuuei.html 1957年IBM公司研制成功的IBM 350&#xff08;RAMAC&#xff09;是第一台真正意义上的硬盘存储器。它由许多片直径为61厘米的盘片组成&#xff0c;盘片由一台电动机带动&#xff0c;只有一个磁头&am…

leetcode--最长回文子串--python

文章目录题目题目详情示例解题思路思路代码运行结果最佳方案题目 题目详情 给定一个字符串 s&#xff0c;找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。 示例 输入: "babad" 输出: "bab" 注意: "aba" 也是一个有效答案。输入:…

java调用接口

public class DemoTest { public static final String GET_URL "http://112.4.27.9/mall-back/if_user/store_list?storeId32"; //get请求// public static final String POST_URL "http://112.4.27.9/mall-back/if_user/store_list"; public sta…

LSGO:团队学习模式“社群化”讨论!

大家关注LSGO软件技术团队也有一段时间了&#xff0c;容我向大家汇报一下目前团队的工作模式。我们通常是这样的&#xff0c;新来团队的同学我们会按照兴趣进行分组&#xff0c;然后在学长或者我的牵头下带着大家“刷”书&#xff0c;以便新来的同学具备最小核心知识。通常&…

Captaris Workflow 6.0 EventService 执行效率低下的排除。

如果您的Captaris Workflow Event Task执行的间隔时间超过30分钟&#xff0c;客户可能向您抱怨流程效率太低了&#xff0c;这时候你可以准备一个只包含Event Task的模型&#xff08;我已经做了一个&#xff0c;点击此处下载&#xff09;&#xff0c;把它部署到服务器并新建一个…

leetcode--最长公共前缀--python

文章目录题目题目详情示例解题思路代码运行结果最佳方案题目 题目详情 编写一个函数来查找字符串数组中的最长公共前缀。 如果不存在公共前缀&#xff0c;返回空字符串 “”。 示例 输入: ["flower","flow","flight"] 输出: "fl"…

个人知识管理的29个原则--摘录

1、持续的学习成为个人生存和发展的基础。持续学习不一定能带来成功&#xff0c;但不学习一定失败&#xff1b; 2、信息和知识爆炸&#xff0c;在一段时间和时期内&#xff0c;学习的内容必须聚焦。起码要在一个领域内成为专家。 3、你应该学习的内容取决于你的价值观、特长、…

硬铺路、软筑墙:三星移动在中国的新路径

虽然已经来过中国60多次&#xff0c;但是高东真的普通话并不十分“地道”。但是当这个三星移动掌舵者一字一字吐出“三星绝不放弃中国市场”的话语时&#xff0c;与会的媒体几乎都在他脸上读到了一种坚毅——在5月于古北水镇召开的Galaxy S8|S8发布会上&#xff0c;他向数百家媒…

对矩阵分解的粗浅理解之LU分解

** 欢迎大家到Matlab与线性代数专栏中查看相关图文。 ** 本图文从行列式计算出发引出了对矩阵LU分解的粗浅理解&#xff0c;希望对正在学习线性代数的同学有所帮助。

leetcode--删除链表的倒数第N个节点--python

文章目录题目题目详情示例说明解题思路思路代码运行结果最佳方案题目 题目详情 给定一个链表&#xff0c;删除链表的倒数第 n 个节点&#xff0c;并且返回链表的头结点。 示例 给定一个链表: 1->2->3->4->5, 和 n 2.当删除了倒数第二个节点后&#xff0c;链表…

VmWare 与 宿主主机通信 STEP BY STEP (适用于刚開始学习的人)

基本原理 在虚拟机中有三种通信方式&#xff0c;例如以下图所看到的 1. Bridged(桥接模式) 在桥接模式下&#xff0c;VMware虚拟出来的操作系统就像是局域网中的一独立的主机&#xff0c;它能够訪问网内不论什么一台机器只是你须要多于一个的IP地址&#xff0c;并且须要手工为 …

古墓丽影8通关了

大概完了两三周吧&#xff0c;每天玩两个多小时&#xff0c;终于把它通关了。这里谈一下我的感受。 画面、声音非常棒&#xff0c;游戏场景也十分宏大&#xff0c;人物造型也更适合东方的审美观&#xff0c;比古墓7强了不少。人物的花样更多了&#xff0c;操作也非常流畅&#…

如何利用遗传算法进行自变量降维

如何利用遗传算法进行自变量降维 GAOT工具箱下载地址&#xff1a;http://download.csdn.net/download/lsgo_myp/9721624 乳腺癌数据集下载地址&#xff1a;http://download.csdn.net/download/lsgo_myp/9721664

leetcode--括号生成--python

文章目录题目题目详情示例解题思路思路代码运行结果最佳方案题目 题目详情 给出 n 代表生成括号的对数&#xff0c;请你写出一个函数&#xff0c;使其能够生成所有可能的并且有效的括号组合。 示例 例如&#xff0c;给出 n 3&#xff0c;生成结果为&#xff1a;["(((…

smarty的简单分页

以下是模板中的smarty代码,用smarty简单的代入相关的变量就行了&#xff0c;非常简单&#xff0c;但是在php代码中还要传入page这个参数。我觉得这样分挺好&#xff0c;非常简单。我越来越喜欢用smarty了 {if $pageCount > 1} {foreach itemi from$pagerList} {if $pageN…

如何利用遗传算法进行自变量降维(代码部分)

如何利用遗传算法进行自变量降维&#xff08;代码部分&#xff09; main.m 主函数 输入自变量优化适应度子函数 fitness.m 输入自变量优化编码解码子函数 de_code.m BP网络权值和阈值优化适应度子函数 gabpEval.m BP网络权值和阈值优化编码解码子函数 gadecod.m 输出结果

unity3d教程运行物理机制

首先&#xff0c;我们将把Hooke定律写Euler方法结合在一起找到新坐标、加速和速度。Hooke定律是Fkx&#xff0c;这里的F是指由水流产生的力&#xff08;记住&#xff0c;我们将把水体表面模拟为水流&#xff09;&#xff0c;k是指水流的常量。x则是位移。我们的位移将成为每一个…