数据结构显示树的所有结点_您需要了解的有关树数据结构的所有信息
数据结构显示树的所有结点
When you first learn to code, it’s common to learn arrays as the “main data structure.”
第一次学习编码时,通常将数组学习为“主要数据结构”。
Eventually, you will learn about hash tables
too. If you are pursuing a Computer Science degree, you have to take a class on data structure. You will also learn about linked lists
, queues
, and stacks
. Those data structures are called “linear” data structures because they all have a logical start and a logical end.
最终,您还将了解hash tables
。 如果要攻读计算机科学学位,则必须参加有关数据结构的课程。 您还将了解linked lists
, queues
和stacks
。 这些数据结构被称为“线性”数据结构,因为它们都具有逻辑起点和逻辑终点。
When we start learning about trees
and graphs
, it can get really confusing. We don’t store data in a linear way. Both data structures store data in a specific way.
当我们开始学习trees
和graphs
,它会变得非常混乱。 我们不会以线性方式存储数据。 两种数据结构均以特定方式存储数据。
This post is to help you better understand the Tree Data Structure and to clarify any confusion you may have about it.
这篇文章是为了帮助您更好地理解“树数据结构”,并澄清您可能对此感到的困惑。
In this article, we will learn:
在本文中,我们将学习:
- What is a tree什么是树
- Examples of trees树木的例子
- Its terminology and how it works它的术语及其工作方式
- How to implement tree structures in code.如何在代码中实现树结构。
Let’s start this learning journey. :)
让我们开始学习之旅。 :)
定义 (Definition)
When starting out programming, it is common to understand better the linear data structures than data structures like trees and graphs.
开始编程时,通常比树和图之类的数据结构更好地理解线性数据结构。
Trees are well-known as a non-linear data structure. They don’t store data in a linear way. They organize data hierarchically.
树是众所周知的非线性数据结构。 它们不会以线性方式存储数据。 他们分层组织数据。
让我们深入研究现实生活中的例子! (Let’s dive into real life examples!)
What do I mean when I say in a hierarchical way?
当我以分层方式说话时,我是什么意思?
Imagine a family tree with relationships from all generation: grandparents, parents, children, siblings, etc. We commonly organize family trees hierarchically.
想象一下一棵与各代人有亲戚关系的家谱:祖父母,父母,孩子,兄弟姐妹等。我们通常按层次组织家谱。
The above drawing is is my family tree. Tossico, Akikazu, Hitomi,
and Takemi
are my grandparents.
上图是我的家谱。 Tossico, Akikazu, Hitomi,
和Takemi
是我的祖父母。
Toshiaki
and Juliana
are my parents.
Toshiaki
和Juliana
是我的父母。
TK, Yuji, Bruno
, and Kaio
are the children of my parents (me and my brothers).
TK, Yuji, Bruno
和Kaio
是我父母(我和我的兄弟)的孩子。
An organization’s structure is another example of a hierarchy.
组织的结构是层次结构的另一个示例。
In HTML, the Document Object Model (DOM) works as a tree.
在HTML中,文档对象模型(DOM)就像一棵树。
The HTML
tag contains other tags. We have a head
tag and a body
tag. Those tags contains specific elements. The head
tag has meta
and title
tags. The body
tag has elements that show in the user interface, for example, h1
, a
, li
, etc.
HTML
标签包含其他标签。 我们有一个head
标签和一个body
标签。 这些标签包含特定元素。 head
标签具有meta
和title
标签。 body
标签具有在用户界面中显示的元素,例如h1
, a
, li
等。
技术定义 (A technical definition)
A tree
is a collection of entities called nodes
. Nodes are connected by edges
. Each node
contains a value
or data
, and it may or may not have a child node
.
tree
是称为nodes
的实体的nodes
。 节点通过edges
连接。 每个node
包含一个value
或data
,并且它可能有也可能没有child node
。
The first node
of the tree
is called the root
. If this root node
is connected by another node
, the root
is then a parent node
and the connected node
is a child
.
tree
的first node
称为root
。 如果此root node
由另一个node
连接,则该root
是parent node
,而连接的node
是child
node
。
All Tree nodes
are connected by links called edges
. It’s an important part of trees
, because it’s manages the relationship between nodes
.
所有Tree nodes
通过称为edges
的链接连接。 它是trees
的重要组成部分,因为它管理nodes
之间的关系。
Leaves
are the last nodes
on a tree.
They are nodes without children. Like real trees, we have the root
, branches
, and finally the leaves
.
Leaves
是tree.
的最后一个nodes
tree.
它们是没有孩子的节点。 像真正的树木一样,我们有root
, branches
,最后还有leaves
。
Other important concepts to understand are height
and depth
.
其他要理解的重要概念是height
和depth
。
The height
of a tree
is the length of the longest path to a leaf
.
tree
的height
是通往leaf
的最长路径的长度。
The depth
of a node
is the length of the path to its root
.
node
的depth
是到其root
的路径的长度。
术语摘要 (Terminology summary)
Root is the topmost
node
of thetree
根是
tree
的最高node
Edge is the link between two
nodes
边缘是两个
nodes
之间的链接Child is a
node
that has aparent node
子
node
是具有parent node
Parent is a
node
that has anedge
to achild node
父
node
是具有child node
edge
的child node
Leaf is a
node
that does not have achild node
in thetree
叶子是一个
node
,它没有一个child node
的tree
Height is the length of the longest path to a
leaf
高度是到
leaf
的最长路径的长度Depth is the length of the path to its
root
深度是到其
root
的路径的长度
二叉树 (Binary trees)
Now we will discuss a specific type of tree
. We call it thebinary tree
.
现在我们将讨论一种特定类型的tree
。 我们称其为binary tree
。
“In computer science, a binary tree is a tree data structure in which each node has at the most two children, which are referred to as the left child and the right child.” — Wikipedia
“在计算机科学中,二叉树是一种树数据结构,其中每个节点最多具有两个子节点,分别称为左子节点和右子节点。” — 维基百科
So let’s look at an example of a binary tree
.
因此,让我们看一个binary tree
的例子。
让我们编写一个二叉树 (Let’s code a binary tree)
The first thing we need to keep in mind when we implement a binary tree
is that it is a collection of nodes
. Each node
has three attributes: value
, left_child
, and right_child
.
实现binary tree
时,我们要记住的第一件事是它是nodes
的集合。 每个node
具有三个属性: value
, left_child
和right_child
。
How do we implement a simple binary tree
that initializes with these three properties?
我们如何实现一个简单的用这三个属性初始化的binary tree
?
Let’s take a look.
让我们来看看。
class BinaryTree:def __init__(self, value):self.value = valueself.left_child = Noneself.right_child = None
Here it is. Our binary tree
class.
这里是。 我们的binary tree
类。
When we instantiate an object, we pass the value
(the data of the node) as a parameter. Look at the left_child
and the right_child
. Both are set to None
.
实例化对象时,我们将value
(节点的数据)作为参数传递。 看一下left_child
和right_child
。 两者都设置为None
。
Why?
为什么?
Because when we create our node
, it doesn’t have any children. We just have the node data
.
因为当我们创建node
,它没有任何子代。 我们只有node data
。
Let’s test it:
让我们测试一下:
tree = BinaryTree('a')
print(tree.value) # a
print(tree.left_child) # None
print(tree.right_child) # None
That’s it.
而已。
We can pass the string
‘a
’ as the value
to our Binary Tree node
. If we print the value
, left_child
, and right_child
, we can see the values.
我们可以将string
“ a
”作为value
传递给我们的Binary Tree node
。 如果我们打印value
, left_child
和right_child
,我们可以看到这些值。
Let’s go to the insertion part. What do we need to do here?
让我们转到插入部分。 我们在这里需要做什么?
We will implement a method to insert a new node
to the right
and to the left
.
我们将实现一种在right
和left
插入新node
的方法。
Here are the rules:
规则如下:
If the current
node
doesn’t have aleft child
, we just create a newnode
and set it to the current node’sleft_child
.如果当前
node
没有left child
node
,我们只需创建一个新node
并将其设置为当前节点的left_child
。If it does have the
left child
, we create a new node and put it in the currentleft child
’s place. Allocate thisleft child node
to the new node’sleft child
.如果确实有
left child
节点,我们将创建一个新节点,并将其放在当前left child
节点的位置。 将此left child node
分配给新节点的left child
节点。
Let’s draw it out. :)
让我们画出来。 :)
Here’s the code:
这是代码:
def insert_left(self, value):if self.left_child == None:self.left_child = BinaryTree(value)else:new_node = BinaryTree(value)new_node.left_child = self.left_childself.left_child = new_node
Again, if the current node doesn’t have a left child
, we just create a new node and set it to the current node’s left_child
. Or else we create a new node and put it in the current left child
’s place. Allocate this left child node
to the new node’s left child
.
同样,如果当前节点没有left child
节点,则只需创建一个新节点并将其设置为当前节点的left_child
。 否则,我们将创建一个新节点,并将其放置在当前left child
节点的位置。 将此left child node
分配给新节点的left child
节点。
And we do the same thing to insert a right child node
.
并且我们做同样的事情来插入一个right child node
。
def insert_right(self, value):if self.right_child == None:self.right_child = BinaryTree(value)else:new_node = BinaryTree(value)new_node.right_child = self.right_childself.right_child = new_node
Done. :)
做完了 :)
But not entirely. We still need to test it.
但并非完全如此。 我们仍然需要测试。
Let’s build the followingtree
:
让我们构建以下tree
:
To summarize the illustration of this tree:
总结一下这棵树的图示:
a
node
will be theroot
of ourbinary Tree
a
node
将成为我们binary Tree
的root
a
left child
isb
node
a
left child
是b
node
a
right child
isc
node
a
right child
是c
node
b
right child
isd
node
(b
node
doesn’t have aleft child
)b
right child
node
是d
node
(b
node
没有left child
node
)c
left child
ise
node
c
left child
node
是e
node
c
right child
isf
node
c
right child
是f
node
both
e
andf
nodes
do not have childrene
和f
nodes
都没有子nodes
So here is the code for the tree
:
所以这是tree
的代码:
a_node = BinaryTree('a')
a_node.insert_left('b')
a_node.insert_right('c')b_node = a_node.left_child
b_node.insert_right('d')c_node = a_node.right_child
c_node.insert_left('e')
c_node.insert_right('f')d_node = b_node.right_child
e_node = c_node.left_child
f_node = c_node.right_childprint(a_node.value) # a
print(b_node.value) # b
print(c_node.value) # c
print(d_node.value) # d
print(e_node.value) # e
print(f_node.value) # f
Insertion is done.
插入完成。
Now we have to think about tree
traversal.
现在我们必须考虑遍历tree
。
We have two options here: Depth-First Search (DFS) and Breadth-First Search (BFS).
这里有两个选项 : 深度优先搜索(DFS)和宽度优先搜索(BFS) 。
DFS “is an algorithm for traversing or searching tree data structure. One starts at the root and explores as far as possible along each branch before backtracking.” — Wikipedia
“ DFS ”是用于遍历或搜索树数据结构的算法。 一个从根开始,并在回溯之前在每个分支上进行尽可能的探索。” — 维基百科
BFS “is an algorithm for traversing or searching tree data structure. It starts at the tree root and explores the neighbor nodes first, before moving to the next level neighbors.” — Wikipedia
BFS是一种用于遍历或搜索树数据结构的算法。 它从树的根部开始,先探索邻居节点,然后再转移到下一级邻居。” — 维基百科
So let’s dive into each tree traversal type.
因此,让我们深入研究每种树遍历类型。
深度优先搜索(DFS) (Depth-First Search (DFS))
DFS explores a path all the way to a leaf before backtracking and exploring another path. Let’s take a look at an example with this type of traversal.
在回溯并探索另一条路径之前, DFS会一直探索到一片叶子的路径。 让我们看一下这种遍历的示例。
The result for this algorithm will be 1–2–3–4–5–6–7.
该算法的结果将是1–2–3–3–4–5–6–7。
Why?
为什么?
Let’s break it down.
让我们分解一下。
Start at the
root
(1). Print it.从
root
(1)开始。 打印它。
2. Go to the left child
(2). Print it.
2.转到left child
(2)。 打印它。
3. Then go to the left child
(3). Print it. (This node
doesn’t have any children)
3.然后转到left child
(3)。 打印它。 (此node
没有任何子node
)
4. Backtrack and go the right child
(4). Print it. (This node
doesn’t have any children)
4.回溯并找到right child
(4)。 打印它。 (此node
没有任何子node
)
5. Backtrack to the root
node
and go to the right child
(5). Print it.
5.回溯到root
node
,然后转到right child
(5)。 打印它。
6. Go to the left child
(6). Print it. (This node
doesn’t have any children)
6.转到left child
(6)。 打印它。 (此node
没有任何子node
)
7. Backtrack and go to the right child
(7). Print it. (This node
doesn’t have any children)
7.回溯并找到right child
(7)。 打印它。 (此node
没有任何子node
)
8. Done.
8.完成。
When we go deep to the leaf and backtrack, this is called DFS algorithm.
当我们深入到叶子并回溯时,这称为DFS算法。
Now that we are familiar with this traversal algorithm, we will discuss types of DFS: pre-order
, in-order
, and post-order
.
现在我们已经熟悉了这种遍历算法,我们将讨论DFS的类型: pre-order
, in-order
和post-order
。
预购 (Pre-order)
This is exactly what we did in the above example.
这正是我们在上面的示例中所做的。
Print the value of the
node
.打印
node
的值。Go to the
left child
and print it. This is if, and only if, it has aleft child
.转到
left child
并打印它。 这是并且仅当它有一个left child
。Go to the
right child
and print it. This is if, and only if, it has aright child
.转到
right child
并打印它。 这是并且仅当它有一个right child
。
def pre_order(self):print(self.value)if self.left_child:self.left_child.pre_order()if self.right_child:self.right_child.pre_order()
为了 (In-order)
The result of the in-order algorithm for this tree
example is 3–2–4–1–6–5–7.
此tree
示例的有序算法的结果是3–2–4–1–1–6–5–7。
The left first, the middle second, and the right last.
左第一,中第二,右最后。
Now let’s code it.
现在让我们编写代码。
def in_order(self):if self.left_child:self.left_child.in_order()print(self.value)if self.right_child:self.right_child.in_order()
Go to the
left child
and print it. This is if, and only if, it has aleft child
.转到
left child
并打印它。 这是并且仅当它有一个left child
。Print the
node
’s value打印
node
的值Go to the
right child
and print it. This is if, and only if, it has aright child
.转到
right child
并打印它。 这是并且仅当它有一个right child
。
后订单 (Post-order)
The result of the post order
algorithm for this tree
example is 3–4–2–6–7–5–1.
该tree
示例的post order
算法的结果是3–4–2–2–6–7–5–1。
The left first, the right second, and the middle last.
左第一,右第二,居中。
Let’s code this.
让我们对此进行编码。
def post_order(self):if self.left_child:self.left_child.post_order()if self.right_child:self.right_child.post_order()print(self.value)
Go to the
left child
and print it. This is if, and only if, it has aleft child
.转到
left child
并打印它。 这是并且仅当它有一个left child
。Go to the
right child
and print it. This is if, and only if, it has aright child
.转到
right child
并打印它。 这是并且仅当它有一个right child
。Print the
node
’s value打印
node
的值
广度优先搜索(BFS) (Breadth-First Search (BFS))
BFS algorithm traverses the tree
level by level and depth by depth.
BFS算法按级别遍历tree
,按深度遍历tree
。
Here is an example that helps to better explain this algorithm:
这是有助于更好地解释此算法的示例:
So we traverse level by level. In this example, the result is 1–2–5–3–4–6–7.
因此,我们逐级遍历。 在此示例中,结果为1–2–5–3–4–6–7。
Level/Depth 0: only
node
with value 1级别/深度0:仅值为1的
node
Level/Depth 1:
nodes
with values 2 and 5级别/深度1:值为2和5的
nodes
Level/Depth 2:
nodes
with values 3, 4, 6, and 7级别/深度2:值为3、4、6和7的
nodes
Now let’s code it.
现在让我们编写代码。
def bfs(self):queue = Queue()queue.put(self)while not queue.empty():current_node = queue.get()print(current_node.value)if current_node.left_child:queue.put(current_node.left_child)if current_node.right_child:queue.put(current_node.right_child)
To implement a BFS algorithm, we use the queue
data structure to help.
为了实现BFS算法,我们使用queue
数据结构来提供帮助。
How does it work?
它是如何工作的?
Here’s the explanation.
这是解释。
First add the
root
node
into thequeue
with theput
method.首先添加
root
node
到queue
与put
方法。Iterate while the
queue
is not empty.在
queue
不为空时进行迭代。Get the first
node
in thequeue
, and then print its value.获取
queue
的第一个node
,然后打印其值。Add both
left
andright
children
into thequeue
(if the currentnode
haschildren
).既能补充
left
和right
children
入queue
(如果当前node
有children
)。Done. We will print the value of each
node,
level by level, with ourqueue
helper.做完了 我们将使用
queue
帮助器逐级打印每个node,
的值。
二进制搜索树 (Binary Search tree)
“A Binary Search Tree is sometimes called ordered or sorted binary trees, and it keeps its values in sorted order, so that lookup and other operations can use the principle of binary search” — Wikipedia
“二叉搜索树有时被称为有序或排序的二叉树,它按排序顺序保留其值,以便查找和其他操作可以使用二叉搜索的原理” — Wikipedia
An important property of a Binary Search Tree
is that the value of a Binary Search Tree
node
is larger than the value of the offspring of its left child
, but smaller than the value of the offspring of its right child.
”
Binary Search Tree
一个重要属性是Binary Search Tree
node
的值大于其left child
子代的后代的值,但小于其right child.
子代的后代的值right child.
”
Here is a breakdown of the above illustration:
这是上面插图的分解:
A is inverted. The
subtree
7–5–8–6 needs to be on the right side, and thesubtree
2–1–3 needs to be on the left.A是倒置的。
subtree
7–5–8–6需要在右侧,subtree
2–1–3需要在左侧。B is the only correct option. It satisfies the
Binary Search Tree
property.B是唯一正确的选项。 它满足
Binary Search Tree
属性。C has one problem: the
node
with the value 4. It needs to be on the left side of theroot
because it is smaller than 5.C有一个问题:值为4的
node
。它必须在root
的左侧,因为它小于5。
让我们编写一个二进制搜索树! (Let’s code a Binary Search Tree!)
Now it’s time to code!
现在是时候编写代码了!
What will we see here? We will insert new nodes, search for a value, delete nodes, and the balance of the tree
.
我们在这里看到什么? 我们将插入新节点,搜索值,删除节点以及tree
的其余部分。
Let’s start.
开始吧。
插入:将新节点添加到我们的树中 (Insertion: adding new nodes to our tree)
Imagine that we have an empty tree
and we want to add new nodes
with the following values in this order: 50, 76, 21, 4, 32, 100, 64, 52.
想象一下,我们有tree
空tree
并希望以此顺序添加具有以下值的新nodes
:50、76、21、4、32、100、64、52。
The first thing we need to know is if 50 is the root
of our tree.
我们需要知道的第一件事是50是否是树的root
。
We can now start inserting node
by node
.
我们现在可以开始插入node
的node
。
- 76 is greater than 50, so insert 76 on the right side.76大于50,因此在右侧插入76。
- 21 is smaller than 50, so insert 21 on the left side.21小于50,因此在左侧插入21。
4 is smaller than 50.
Node
with value 50 has aleft child
21. Since 4 is smaller than 21, insert it on the left side of thisnode
.4小于50。值为50的
Node
具有left child
Node
21。由于4小于21,因此将其插入此node
的左侧。32 is smaller than 50.
Node
with value 50 has aleft child
21. Since 32 is greater than 21, insert 32 on the right side of thisnode
.32小于50。值为50的
Node
具有left child
Node
21。由于32大于21,因此在此node
的右侧插入32。100 is greater than 50.
Node
with value 50 has aright child
76. Since 100 is greater than 76, insert 100 on the right side of thisnode
.100大于50。值为50的
Node
具有right child
Node
76。由于100大于76,因此在此node
的右侧插入100。64 is greater than 50.
Node
with value 50 has aright child
76. Since 64 is smaller than 76, insert 64 on the left side of thisnode
.64大于50。值为50的
Node
有一个right child
Node
76。由于64小于76,因此在此node
的左侧插入64。52 is greater than 50.
Node
with value 50 has aright child
76. Since 52 is smaller than 76,node
with value 76 has aleft child
64. 52 is smaller than 64, so insert 54 on the left side of thisnode
.52大于50。值为50的
Node
具有right child
Node
76。由于52小于76,因此值为76的node
具有left child
node
64。52小于64,因此在该node
的左侧插入54。
Do you notice a pattern here?
您在这里注意到一种模式吗?
Let’s break it down.
让我们分解一下。
Is the new
node
value greater or smaller than the currentnode
?新
node
值是否大于或小于当前node
?If the value of the new
node
is greater than the currentnode,
go to the rightsubtree
. If the currentnode
doesn’t have aright child
, insert it there, or else backtrack to step #1.如果新
node
值大于当前node,
请转到右侧的subtree
。 如果当前node
没有right child
,则将其插入那里,否则返回到步骤1。If the value of the new
node
is smaller than the currentnode
, go to the leftsubtree
. If the currentnode
doesn’t have aleft child
, insert it there, or else backtrack to step #1.如果新
node
值小于当前node
,请转到左侧的subtree
。 如果当前node
没有left child
node
,则将其插入其中,否则返回到步骤1。We did not handle special cases here. When the value of a new
node
is equal to the current value of thenode,
use rule number 3. Consider inserting equal values to the left side of thesubtree
.我们在这里没有处理特殊情况。 当新
node
值等于该node,
的当前值时node,
使用规则编号3。请考虑在subtree
的左侧插入相等的值。
Now let’s code it.
现在让我们编写代码。
class BinarySearchTree:def __init__(self, value):self.value = valueself.left_child = Noneself.right_child = Nonedef insert_node(self, value):if value <= self.value and self.left_child:self.left_child.insert_node(value)elif value <= self.value:self.left_child = BinarySearchTree(value)elif value > self.value and self.right_child:self.right_child.insert_node(value)else:self.right_child = BinarySearchTree(value)
It seems very simple.
看起来很简单。
The powerful part of this algorithm is the recursion part, which is on line 9 and line 13. Both lines of code call the insert_node
method, and use it for its left
and right
children
, respectively. Lines 11
and 15
are the ones that do the insertion for each child
.
该算法的强大部分是递归部分,它位于第9行和第13行。这两行代码都调用insert_node
方法,并将其分别用于其left
和right
children
。 第11
和15
是为每个child
插入的行。
让我们搜索节点值...还是不... (Let’s search for the node value… Or not…)
The algorithm that we will build now is about doing searches. For a given value (integer number), we will say if our Binary Search Tree
does or does not have that value.
我们现在将构建的算法是关于搜索。 对于给定的值(整数),我们将说明Binary Search Tree
是否具有该值。
An important item to note is how we defined the tree insertion algorithm. First we have our root
node
. All the left subtree
nodes
will have smaller values than the root
node
. And all the right subtree
nodes
will have values greater than the root
node
.
要注意的重要事项是我们如何定义树插入算法 。 首先,我们有我们的root
node
。 所有的左subtree
nodes
将具有比更小的值root
node
。 所有的右subtree
nodes
将有值比更大的root
node
。
Let’s take a look at an example.
让我们看一个例子。
Imagine that we have this tree
.
想象我们有一tree
。
Now we want to know if we have a node based on value 52.
现在我们想知道是否有一个基于值52的节点。
Let’s break it down.
让我们分解一下。
We start with the
root
node
as our currentnode
. Is the given value smaller than the currentnode
value? If yes, then we will search for it on the leftsubtree
.我们先从
root
node
作为我们当前的node
。 给定值是否小于当前node
值? 如果是,那么我们将在左侧的subtree
搜索它。Is the given value greater than the current
node
value? If yes, then we will search for it on the rightsubtree
.给定值是否大于当前
node
值? 如果是,那么我们将在右侧的subtree
搜索它。If rules #1 and #2 are both false, we can compare the current
node
value and the given value if they are equal. If the comparison returnstrue
, then we can say, “Yeah! Ourtree
has the given value,” otherwise, we say, “Nooo, it hasn’t.”如果规则#1和#2都为假,则如果它们相等,则可以比较当前
node
值和给定值。 如果比较结果为true
,那么我们可以说:“是的! 我们的tree
具有给定的值,”否则,我们说“不,它没有。”
Now let’s code it.
现在让我们编写代码。
class BinarySearchTree:def __init__(self, value):self.value = valueself.left_child = Noneself.right_child = Nonedef find_node(self, value):if value < self.value and self.left_child:return self.left_child.find_node(value)if value > self.value and self.right_child:return self.right_child.find_node(value)return value == self.value
Let’s beak down the code:
让我们简化一下代码:
- Lines 8 and 9 fall under rule #1.第8和9行属于规则1。
- Lines 10 and 11 fall under rule #2.第10和11行属于规则2。
- Line 13 falls under rule #3.第13行属于规则3。
How do we test it?
我们如何测试呢?
Let’s create our Binary Search Tree
by initializing the root
node
with the value 15.
让我们来创建我们的Binary Search Tree
通过初始化root
node
,其值为15。
bst = BinarySearchTree(15)
And now we will insert many new nodes
.
现在我们将插入许多新nodes
。
bst.insert_node(10)
bst.insert_node(8)
bst.insert_node(12)
bst.insert_node(20)
bst.insert_node(17)
bst.insert_node(25)
bst.insert_node(19)
For each inserted node
, we will test if our find_node
method really works.
对于每个插入的node
,我们将测试find_node
方法是否真的有效。
print(bst.find_node(15)) # True
print(bst.find_node(10)) # True
print(bst.find_node(8)) # True
print(bst.find_node(12)) # True
print(bst.find_node(20)) # True
print(bst.find_node(17)) # True
print(bst.find_node(25)) # True
print(bst.find_node(19)) # True
Yeah, it works for these given values! Let’s test for a value that doesn’t exist in our Binary Search Tree
.
是的,它适用于这些给定的值! 让我们测试一下Binary Search Tree
中不存在的Binary Search Tree
。
print(bst.find_node(0)) # False
Oh yeah.
哦耶。
Our search is done.
我们的搜索完成。
删除:删除并整理 (Deletion: removing and organizing)
Deletion is a more complex algorithm because we need to handle different cases. For a given value, we need to remove the node
with this value. Imagine the following scenarios for this node
: it has no children
, has a single child
, or has two children
.
删除是一种更复杂的算法,因为我们需要处理不同的情况。 对于给定的值,我们需要删除具有该值的node
。 想象一下该node
的以下情形:它没有children
node
,有一个child
node
或有两个children
node
。
Scenario #1: A
node
with nochildren
(leaf
node
).方案1:一个
node
无children
(leaf
node
)。
# |50| |50|
# / \ / \
# |30| |70| (DELETE 20) ---> |30| |70|
# / \ \
# |20| |40| |40|
If the node
we want to delete has no children, we simply delete it. The algorithm doesn’t need to reorganize the tree
.
如果要删除的node
没有子node
,则只需删除它。 该算法不需要重组tree
。
Scenario #2: A
node
with just one child (left
orright
child).场景2 :只有一个孩子(
left
或right
孩子)的node
。
# |50| |50|
# / \ / \
# |30| |70| (DELETE 30) ---> |20| |70|
# /
# |20|
In this case, our algorithm needs to make the parent of the node
point to the child
node. If the node
is the left child
, we make the parent of the left child
point to the child
. If the node
is the right child
of its parent, we make the parent of the right child
point to the child
.
在这种情况下,我们的算法需要使node
的父node
指向child
节点。 如果该node
是left child
,我们做的父left child
点的child
。 如果该node
是right child
其父的,我们做的父right child
点的child
。
Scenario #3: A
node
with two children.场景3 :一个有两个孩子的
node
。
# |50| |50|
# / \ / \
# |30| |70| (DELETE 30) ---> |40| |70|
# / \ /
# |20| |40| |20|
When the node
has 2 children, we need to find the node
with the minimum value, starting from the node
’sright child
. We will put this node
with minimum value in the place of the node
we want to remove.
当node
有2个孩子,我们需要找到node
与最小值,从起始node
的right child
。 我们将使用最小值将该node
放置在要删除的node
的位置。
It’s time to code.
是时候编写代码了。
def remove_node(self, value, parent):if value < self.value and self.left_child:return self.left_child.remove_node(value, self)elif value < self.value:return Falseelif value > self.value and self.right_child:return self.right_child.remove_node(value, self)elif value > self.value:return Falseelse:if self.left_child is None and self.right_child is None and self == parent.left_child:parent.left_child = Noneself.clear_node()elif self.left_child is None and self.right_child is None and self == parent.right_child:parent.right_child = Noneself.clear_node()elif self.left_child and self.right_child is None and self == parent.left_child:parent.left_child = self.left_childself.clear_node()elif self.left_child and self.right_child is None and self == parent.right_child:parent.right_child = self.left_childself.clear_node()elif self.right_child and self.left_child is None and self == parent.left_child:parent.left_child = self.right_childself.clear_node()elif self.right_child and self.left_child is None and self == parent.right_child:parent.right_child = self.right_childself.clear_node()else:self.value = self.right_child.find_minimum_value()self.right_child.remove_node(self.value, self)return True
First: Note the parameters
value
andparent
. We want to find thenode
that has thisvalue
, and thenode
’s parent is important to the removal of thenode
.首先 :注意参数
value
和parent
。 我们要查找的node
具有此value
,和node
的家长要去除的重要node
。Second: Note the returning value. Our algorithm will return a boolean value. It returns
True
if it finds thenode
and removes it. Otherwise it will returnFalse
.第二 :记下返回值。 我们的算法将返回布尔值。 如果找到并删除该
node
,则返回True
。 否则它将返回False
。From line 2 to line 9: We start searching for the
node
that has thevalue
that we are looking for. If thevalue
is smaller than thecurrent nodevalue
, we go to theleft subtree
, recursively (if, and only if, thecurrent node
has aleft child
). If thevalue
is greater, go to theright subtree
, recursively.从第2行到第9行 :我们开始搜索具有我们要查找的
value
的node
。 如果该value
小于current nodevalue
,则递归地转到left subtree
(当且仅当current node
具有left child
)。 如果该value
更大,则递归转到right subtree
。Line 10: We start to think about the
remove
algorithm.第10行 :我们开始考虑
remove
算法。From line 11 to line 13: We cover the
node
with nochildren
, and it is theleft child
from itsparent
. We remove thenode
by setting theparent
’sleft child
toNone
.从第11行到第13行 :我们覆盖了没有
children
node
,它是parent
node
的left child
parent
。 我们通过将parent
node
的left child
node
设置为None
来删除该node
。Lines 14 and 15: We cover the
node
with nochildren
, and it is theright child
from it’sparent
. We remove thenode
by setting theparent
’sright child
toNone
.第14和15行 :我们覆盖了没有
children
node
,它是来自parent
node
的right child
parent
。 我们通过将parent
的right child
为None
来删除该node
。Clear node method: I will show the
clear_node
code below. It sets the nodesleft child , right child
, and itsvalue
toNone
.清除节点方法 :我将在下面显示
clear_node
代码。 它将节点设置为left child , right child
,并将其value
为None
。From line 16 to line 18: We cover the
node
with just onechild
(left child
), and it is theleft child
from it’sparent
. We set theparent
'sleft child
to thenode
’sleft child
(the only child it has).从第16行到第18行 :我们仅用一个
child
node
(left child
node
覆盖该node
,它是parent
的left child
parent
。 我们将parent
node
的left child
设置为node
的left child
(其唯一的孩子)。From line 19 to line 21: We cover the
node
with just onechild
(left child
), and it is theright child
from itsparent
. We set theparent
'sright child
to thenode
’sleft child
(the only child it has).从第19行到第21行 :我们仅用一个
child
node
(left child
node
覆盖该node
,它是parent
的right child
parent
。 我们将parent
node
的right child
node
设置为node
的left child
node
(它唯一的子node
)。From line 22 to line 24: We cover the
node
with just onechild
(right child
), and it is theleft child
from itsparent
. We set theparent
'sleft child
to thenode
’sright child
(the only child it has).从第22行到第24行 :我们仅用一个
child
node
(right child
node
覆盖该node
,它是parent
的left child
parent
。 我们将parent
的left child
设置为node
的right child
(它唯一的子级)。From line 25 to line 27: We cover the
node
with just onechild
(right child
) , and it is theright child
from itsparent
. We set theparent
'sright child
to thenode
’sright child
(the only child it has).从第25行到第27行 :我们仅用一个
child
node
(right child
node
覆盖该node
,它是parent
的right child
parent
。 我们将parent
的right child
设置为node
的right child
(它唯一的子级)。From line 28 to line 30: We cover the
node
with bothleft
andright
children. We get thenode
with the smallestvalue
(the code is shown below) and set it to thevalue
of thecurrent node
. Finish it by removing the smallestnode
.从第28行至30行 :我们覆盖的
node
与两个left
和right
的孩子。 我们拿到的node
具有最小value
(代码如下所示),将其设置为value
的的current node
。 通过删除最小的node
完成它。Line 32: If we find the
node
we are looking for, it needs to returnTrue
. From line 11 to line 31, we handle this case. So just returnTrue
and that’s it.第32行 :如果找到要查找的
node
,则需要返回True
。 从第11行到第31行,我们处理这种情况。 因此,只需返回True
。
To use the
clear_node
method: set theNone
value to all three attributes — (value
,left_child
, andright_child
)要使用
clear_node
方法:将None
值设置为所有三个属性-(value
,left_child
和right_child
)
def clear_node(self):self.value = Noneself.left_child = Noneself.right_child = None
To use the
find_minimum_value
method: go way down to the left. If we can’t find anymore nodes, we found the smallest one.要使用
find_minimum_value
方法:向下移至左侧。 如果我们再也找不到节点,我们将找到最小的节点。
def find_minimum_value(self):if self.left_child:return self.left_child.find_minimum_value()else:return self.value
Now let’s test it.
现在让我们对其进行测试。
We will use this tree
to test our remove_node
algorithm.
我们将使用此tree
来测试remove_node
算法。
# |15|
# / \
# |10| |20|
# / \ / \
# |8| |12| |17| |25|
# \
# |19|
Let’s remove the node
with the value
8. It’s a node
with no child.
让我们删除node
与value
8这是一个node
,没有孩子。
print(bst.remove_node(8, None)) # True
bst.pre_order_traversal()# |15|
# / \
# |10| |20|
# \ / \
# |12| |17| |25|
# \
# |19|
Now let’s remove the node
with the value
17. It’s a node
with just one child.
现在,让我们删除node
与value
17.这是一个node
只有一个孩子。
print(bst.remove_node(17, None)) # True
bst.pre_order_traversal()# |15|
# / \
# |10| |20|
# \ / \
# |12| |19| |25|
Finally, we will remove a node
with two children. This is the root
of our tree
.
最后,我们将删除具有两个子node
。 这是我们tree
的root
。
print(bst.remove_node(15, None)) # True
bst.pre_order_traversal()# |19|
# / \
# |10| |20|
# \ \
# |12| |25|
The tests are now done. :)
现在测试已完成。 :)
目前为止就这样了! (That’s all for now!)
We learned a lot here.
我们在这里学到了很多东西。
Congrats on finishing this dense content. It’s really tough to understand a concept that we do not know. But you did it. :)
恭喜您完成了此密集内容。 理解我们不知道的概念真的很困难。 但是你做到了。 :)
This is one more step forward in my journey to learning and mastering algorithms and data structures. You can see the documentation of my complete journey here on my Renaissance Developer publication.
这是我学习和掌握算法和数据结构的过程中又迈出的一步。 您可以在我的Renaissance Developer出版物上看到我完整旅程的文档。
Have fun, keep learning and coding.
玩得开心,继续学习和编码。
My Twitter & Github. ☺
我的Twitter和Github 。 ☺
额外资源 (Additional resources)
Introduction to Tree Data Structure by mycodeschool
mycodeschool对树数据结构的介绍
Tree by Wikipedia
维基百科的树
How To Not Be Stumped By Trees by the talented Vaidehi Joshi
有才华的Vaidehi Joshi如何不被树木绊倒
Intro to Trees, Lecture by Professor Jonathan Cohen
乔纳森·科恩 ( Jonathan Cohen)教授的树木简介
Intro to Trees, Lecture by Professor David Schmidt
树木简介, David Schmidt教授演讲
Intro to Trees, Lecture by Professor Victor Adamchik
树木介绍, Victor Adamchik教授的演讲
Trees with Gayle Laakmann McDowell
盖尔·拉克曼·麦克道尔(Gayle Laakmann McDowell)
Binary Tree Implementation and Tests by TK
TK的 二叉树实现和测试
Coursera Course: Data Structures by University of California, San Diego
Coursera课程: 加利福尼亚大学圣地亚哥分校的数据结构
Coursera Course: Data Structures and Performance by University of California, San Diego
Coursera课程: 加利福尼亚大学圣地亚哥分校的数据结构和性能
Binary Search Tree concepts and Implementation by Paul Programming
二进制搜索树的概念和Paul Programming的实现
Binary Search Tree Implementation and Tests by TK
TK的 二进制搜索树实现和测试
Tree Traversal by Wikipedia
维基百科的树遍历
Binary Search Tree Remove Node Algorithm by GeeksforGeeks
GeeksforGeeks的二叉搜索树删除节点算法
Binary Search Tree Remove Node Algorithm by Algolist
二叉搜索树删除节点算法通过Algolist
Learning Python From Zero to Hero
从零到英雄学习Python
翻译自: https://www.freecodecamp.org/news/all-you-need-to-know-about-tree-data-structures-bceacb85490c/
数据结构显示树的所有结点
相关文章:

Unity应用架构设计(9)——构建统一的 Repository
谈到 『Repository』 仓储模式,第一映像就是封装了对数据的访问和持久化。Repository 模式的理念核心是定义了一个规范,即接口『Interface』,在这个规范里面定义了访问以及持久化数据的行为。开发者只要对接口进行特定的实现就可以满足对不同…

PHP连接数据库并创建一个表
微信小程序开发交流qq群 173683895 承接微信小程序开发。扫码加微信。 <html> <body><form action"test.class.php" method"post"> title: <input type"text" name"title"><br> centent: <input t…

MyBatis 入门
什么是 MyBatis ? MyBatis 是支持定制化 SQL、存储过程以及高级映射的优秀的持久层框架。MyBatis 避免了几乎所有的 JDBC 代码和手工设置参数以及抽取结果集。MyBatis 使用简单的 XML 或注解来配置和映射基本体,将接口和 Java 的 POJOs(Plain Old Java O…

cms基于nodejs_我如何使基于CMS的网站脱机工作
cms基于nodejsInterested in learning JavaScript? Get my ebook at jshandbook.com有兴趣学习JavaScript吗? 在jshandbook.com上获取我的电子书 This case study explains how I added the capability of working offline to the writesoftware.org website (whic…

how-to-cartoon-ify-an-image-programmatically
http://stackoverflow.com/questions/1357403/how-to-cartoon-ify-an-image-programmatically 转载于:https://www.cnblogs.com/guochen/p/6655333.html

Android Studio 快捷键
2015.02.05补充代码重构快捷键 Alt回车 导入包 自动修正CtrlN 查找类CtrlShiftN 查找文件CtrlAltL 格式化代码CtrlAltO 优化导入的类和包AltInsert 生成代码(如get,set方法,构造函数等)CtrlE或者AltShiftC 最近更改的代码CtrlR 替换文本CtrlF 查找文本CtrlShiftSpace 自动补全…

【微信小程序】异步请求,权重,自适应宽度并折行,颜色渐变,绝对定位
微信小程序开发交流qq群 173683895 承接微信小程序开发。扫码加微信。 正文: 写这篇博文主要是为了能够给到大家做类似功能一些启迪,下面效果图中就是代码实现的效果,其中用到的技巧点还是比较多的, <!--pages/demo_list/d…

服务器部署基础知识_我在生产部署期间学到的知识
服务器部署基础知识by Shruti Tanwar通过Shruti Tanwar 我在生产部署期间学到的知识 (What I learned during production deployment) Production deployment. The final stage of every project. When all the hard work you’ve put in over the course of time goes live t…

STM32 KEIL中 负数绝对值处理
使用数码管显示负温度时需要把负数转换为绝对值 #include<math.h> 使用abs 或者自己写函数 #define ABS(x) ((x)>0?(x):-(x)))转载于:https://www.cnblogs.com/yekongdexingxing/p/6657371.html

js数组按照下标对象的属性排序
微信小程序开发交流qq群 173683895 承接微信小程序开发。扫码加微信。 根据数组中某个参数的值的大小进行升序 <script type"text/javascript">function compare(val) {return function (a, b) {var value1 a[val];var value2 b[val];return value1…

window 下相关命令
1. 启动window服务(各种应用启动设置的地方)命令方式: 1). window 按钮(输入CMD的地方)处输入:services.msc ,然后执行。 // 输入命令正确,上面的待选框中会出现要执行的命令。msc 可以理解为Microsoft client 2). 计算机 -- …

javascript语法糖_语法糖和JavaScript糖尿病
javascript语法糖by Ryan Yurkanin瑞安尤卡宁(Ryan Yurkanin) 语法糖和JavaScript糖尿病 (Syntactic Sugar and JavaScript Diabetes) Syntactic sugar is shorthand for communicating a larger thought in a programming language.语法糖是用编程语言传达更大思想的简写。 …

《DSP using MATLAB》示例Example7.23
代码: wp 0.2*pi; ws 0.3*pi; Rp 0.25; As 50; [delta1, delta2] db2delta(Rp, As);[N, f, m, weights] firpmord([wp, ws]/pi, [1, 0], [delta1, delta2]);N f m weightsh firpm(N, f, m, weights); [db, mag, pha, grd, w] freqz_m(h, [1]);delta_w 2*pi…

css画图笔记
微信小程序开发交流qq群 173683895 承接微信小程序开发。扫码加微信。 正文: 在网页中,经常会用到各种Icon,如果老是麻烦设计狮画出来不免有些不好意思,所以有时候我们也可以用CSS写出各种简单的形状,一来可以减轻…

Web前端开发最佳实践(8):还没有给CSS样式排序?其实你可以更专业一些
前言 CSS样式排序是指按照一定的规则排列CSS样式属性的定义,排序并不会影响CSS样式的功能和性能,只是让代码看起来更加整洁。CSS代码的逻辑性并不强,一般的开发者写CSS样式也很随意,所以如果不借助工具,不太容易按照既…

超越Android:Kotlin在后端的工作方式
by Adam Arold亚当阿罗德(Adam Arold) 超越Android:Kotlin在后端的工作方式 (Going Beyond Android: how Kotlin works on the Backend) This article is part of a series.本文是系列文章的一部分。 While most developers use Kotlin on Android, it is also a …

词汇的理解 —— 汉译英(术语)
词汇的理解 —— 英译汉 1. 名词 机制:mechanism,系统:system;2. 动词 融资:financing;制动:braking,就是“刹车”;3. 音乐与乐器 horn:喇叭,号角…

Swift从零开始学习_08(代理协议传值)
Swift中的代理协议的写法. 这是第一个页面有一个button和一个label, button点击跳到下一个页面. 第二个页面有一个输入框和一个按钮, 点击按钮把输入框里的内容设置为第一个页面label的内容.效果如下 接下来是代码部分.跟OC的写法还是一样的.这里不再写第一个页面的那些UI的…

[微信小程序]商城之购买商品数量实现
微信小程序开发交流qq群 173683895 承接微信小程序开发。扫码加微信。 正文: 这里有三种变更数量的方式, 加号,减号,input输入 , 这里做了限制,数量不能小于等于0并且不能超过现有库存,下面是…

测试nginx网站代码_在40行以下代码中使用NGINX进行A / B测试
测试nginx网站代码by Nitish Phanse由Nitish Phanse 在40行以下代码中使用NGINX进行A / B测试 (A/B testing with NGINX in under 40 lines of code) A/B Testing, has enabled designers and product managers to get a deep insight into user behavioral patterns.A / B测试…

HttpServletResponse,HttpServletRequest详解
HttpServletResponse,HttpServletRequest详解 1、相关的接口 HttpServletRequest HttpServletRequest接口最常用的方法就是获得请求中的参数,这些参数一般是客户端表单中的数据。同时,HttpServletRequest接口可以获取由客户端传送的名称,也可…

[微信小程序]this.setData , that.setData , this.data.val三者之间的区别和作用
微信小程序开发交流qq群 173683895 承接微信小程序开发。扫码加微信。 正文: 1.this.setData({ }) <view bindtouchmove"tap_drag" bindtouchend"tap_end" bindtouchstart"tap_start" class"page-top" style"{…

jQuery(一)引入
一、jQuery简介 jQuery是一个兼容多浏览器的javascript库,核心理念是write less,do more(写得更少,做得更多) 二、安装 2.1、下载 下载地址:http://jquery.com/download/ 2.2、引入 在页面头部加入 <head> <meta http-equiv"Content-Type&…

javascript 堆栈_JavaScript调用堆栈-它是什么以及为什么它是必需的
javascript 堆栈The JavaScript engine (which is found in a hosting environment like the browser), is a single-threaded interpreter comprising of a heap and a single call stack. The browser provides web APIs like the DOM, AJAX, and Timers.JavaScript引擎(可在…

idea崩溃导致的svn插件丢失问题, maven dependencies视图丢失问题
Idea丢失Svn解决办法今天打开Idea,习惯用ctrlt来更新svn,杯具出现了,快捷键失效了,我觉得可能是其他的什么软件占用了这个快捷键,于是重启了一下,发现还是不行,svn信息怎么没了,chan…

python3代码
import urllib.request url"http://mm.taobao.com/json/request_top_list.htm?type0&page1" upurllib.request.urlopen(url)#打开目标页面,存入变量up contup.read()#从up中读入该HTML文件 key1<a href"http#设置关键字1key2"target&qu…

【微信小程序】侧滑栏,手动侧滑出个人中心(完整代码附效果图)
微信小程序开发交流qq群 581478349 承接微信小程序开发。扫码加微信。 正文: 博文分三部分,1.效果图及功能效果说明 2.实现思路 3.源代码 欢迎加入微信小程序开发交流群(173683895) 一.老惯例先上效果图,本篇博…

1:1 人脸比对 开源_Hacktoberfest:我的开源门户
1:1 人脸比对 开源by Maribel Duran通过Maribel Duran Hacktoberfest:我的开源门户 (Hacktoberfest: My Gateway to Open Source) “Individually, we are one drop. Together, we are an ocean.”“就个人而言,我们只是一滴滴。 在一起,我们…

地图收敛心得170405
寻路算法大总结! 交换机生成树采用的是完全不同的D-V(distance vector)距离矢量算法,并不是很可靠. 并不是任意两点之间的最短路径,因为任意两点之间取最短路径可能有环路:总权更大 交换机STP不一定是最小生成树!!!举例论证 因为它只是所有交换机到根桥最短 贪心算法的味道 kru…

微信小程序游戏开发文档以及开发工具地址
微信小程序开发交流qq群 581478349 承接微信小程序开发。扫码加微信。 正文: 微信官方于 2017 - 12 - 28 日 开发微信小程序 开发小游戏 , 微信小程序小游戏开发官方文档的地址 https://mp.weixin.qq.com/debug/wxagame/dev/index.html?t20171228…