……一道丧病线段树膜板题……
被常数卡的死去活来……QAQ
学到了些奇技淫巧:把取min标记 和 区间最小值 合并
可以快很多……
#include <bits/stdc++.h> #define lc(t) ((t) << 1) #define rc(t) (((t) << 1) | 1) #define N 2000010 #define INF 1000000000 #define LL long longtemplate <class T> inline T &read(T &x) {static int f;static char c; for (f = 1; !isdigit(c = getchar()); ) {if (c == '-')f = -1;}for (x = 0; isdigit(c); c = getchar()) {x = x * 10 + c - 48;}return x *= f; }template <class T> inline void write(T x, const char p = '\n') {static int top;static int s[30];if (x < 0) {x = -x;putchar('-');}do s[++ top] = x % 10 + 48;while (x /= 10);while (top)putchar(s[top --]);putchar(p); }using namespace std; int n, m; int mn[N], mx[N], cn[N], cx[N], sn[N], sx[N]; LL sum[N]; int t_a[N], t_n[N], t_x[N], i_n[N], i_x[N]; int lb[N], rb[N]; inline void upd(register int t) {sum[t] = sum[lc(t)] + sum[rc(t)];if (mn[lc(t)] == mn[rc(t)]) mn[t] = mn[lc(t)], cn[t] = cn[lc(t)] + cn[rc(t)], sn[t] = min(sn[lc(t)], sn[rc(t)]);else if (mn[lc(t)] < mn[rc(t)]) mn[t] = mn[lc(t)], cn[t] = cn[lc(t)], sn[t] = min(sn[lc(t)], mn[rc(t)]);else mn[t] = mn[rc(t)], cn[t] = cn[rc(t)], sn[t] = min(mn[lc(t)], sn[rc(t)]);if (mx[lc(t)] == mx[rc(t)]) mx[t] = mx[lc(t)], cx[t] = cx[lc(t)] + cx[rc(t)], sx[t] = max(sx[lc(t)], sx[rc(t)]);else if (mx[lc(t)] > mx[rc(t)]) mx[t] = mx[lc(t)], cx[t] = cx[lc(t)], sx[t] = max(sx[lc(t)], mx[rc(t)]);else mx[t] = mx[rc(t)], cx[t] = cx[rc(t)], sx[t] = max(mx[lc(t)], sx[rc(t)]);} void build(int t, int l, int r) {lb[t] = l; rb[t] = r;if (l == r) {int x;read(x);mn[t] = mx[t] = sum[t] = x; cn[t] = cx[t] = 1; sn[t] = INF; sx[t] = -INF;}else {build(lc(t), l, (l + r) / 2);build(rc(t), (l + r) / 2 + 1, r);upd(t);} } inline void add(register int t, int d) {sum[t] += (LL)d * (rb[t] - lb[t] + 1);mn[t] += d; mx[t] += d; sn[t] += d; sx[t] += d;t_a[t] += d; }template <class T> inline void chkmin(T &x, T y) { x > y && (x = y); } template <class T> inline void chkmax(T &x, T y) { x < y && (x = y); } inline void m_x(register int t, int d) {sum[t] += (LL)cn[t] * (d - mn[t]);mn[t] = d; chkmax(mx[t], d);if (mx[t] == mn[t]){cx[t] = cn[t] = rb[t] - lb[t] + 1;sum[t] = (LL)mx[t] * (rb[t] - lb[t] + 1);sn[t] = INF; sx[t] = -INF;}else chkmax(sx[t], d); } inline void m_n(register int t, int d) {sum[t] += (LL)cx[t] * (d - mx[t]);mx[t] = d; chkmin(mn[t], d);if (mx[t] == mn[t]){cx[t] = cn[t] = rb[t] - lb[t] + 1;sum[t] = (LL)mx[t] * (rb[t] - lb[t] + 1);sn[t] = INF; sx[t] = -INF;}else chkmin(sn[t], d); } inline void psdw(register int t) {if (t_a[t]){add(lc(t), t_a[t]);add(rc(t), t_a[t]);t_a[t] = 0;}if (mx[lc(t)] > mx[t] && sx[lc(t)] < mx[t]) m_n(lc(t), mx[t]);if (mx[rc(t)] > mx[t] && sx[rc(t)] < mx[t]) m_n(rc(t), mx[t]);if (mn[lc(t)] < mn[t] && sn[lc(t)] > mn[t]) m_x(lc(t), mn[t]);if (mn[rc(t)] < mn[t] && sn[rc(t)] > mn[t]) m_x(rc(t), mn[t]); } namespace segment {int l, r, d;void seg_add(int t){if (l <= lb[t] && rb[t] <= r){add(t, d);return;}psdw(t);if (l <= rb[lc(t)]) seg_add(lc(t));if (r >= lb[rc(t)]) seg_add(rc(t));upd(t);}void seg_m_x(int t){if (mn[t] >= d) return;if (l <= lb[t] && rb[t] <= r && sn[t] > d){m_x(t, d);return;}psdw(t);if (l <= rb[lc(t)]) seg_m_x(lc(t));if (r >= lb[rc(t)]) seg_m_x(rc(t));upd(t);}void seg_m_n(int t){if (mx[t] <= d) return;if (l <= lb[t] && rb[t] <= r && sx[t] < d){m_n(t, d);return;}psdw(t);if (l <= rb[lc(t)]) seg_m_n(lc(t));if (r >= lb[rc(t)]) seg_m_n(rc(t));upd(t);}LL get_sum(int t){if (l <= lb[t] && rb[t] <= r){return sum[t];}LL d = 0;psdw(t);if (l <= rb[lc(t)]) d += get_sum(lc(t));if (r >= lb[rc(t)]) d += get_sum(rc(t));return d;}int get_max(int t){if (l <= lb[t] && rb[t] <= r){return mx[t];}int d = -INF;psdw(t);if (l <= rb[lc(t)]) d = max(d, get_max(lc(t)));if (r >= lb[rc(t)]) d = max(d, get_max(rc(t)));return d;}int get_min(int t){if (l <= lb[t] && rb[t] <= r){return mn[t];}int d = INF;psdw(t);if (l <= rb[lc(t)]) d = min(d, get_min(lc(t)));if (r >= lb[rc(t)]) d = min(d, get_min(rc(t)));return d;} }int main() {read(n);build(1, 1, n);read(m);while (m --){using namespace segment;int opt;read(opt); read(l); read(r);if (opt <= 3) read(d);switch (opt){case 1: seg_add(1); break;case 2: seg_m_x(1); break;case 3: seg_m_n(1); break;case 4: write(get_sum(1)); break;case 5: write(get_max(1)); break;case 6: write(get_min(1)); break;}}//write(c, ' '); write(d); }