当前位置: 首页 > 编程日记 > 正文

TCP中的三次握手和四次挥手

TCP中的连接和断开可以说是在面试中经常被问到的问题之一,正好有空就总结一下,首先回顾一下TCP的相关知识点

1. TCP的基础知识

1.1 TCP的基本概念

我们知道TCP是运输层的面向连接的可靠的传输协议。面向连接的,指的就是在两个进程发送数据之前,必须先相互“握手”,确保两进程可以进行连接。并且这个传输是点对点的,即一个TCP连接中只有一个发送方和接收方;可靠的,指的是在任何网络情况下,在TCP传输中数据都将完整的发送到接收方。

1.2 TCP的报文段结构

  1. 源端口和目的端口:和UDP一样用于多路复用/分解来自或送到上一层

  2. 序号:一个报文段的序号是整个传送的字节流序列,而不是该报文段的序列

  3. 确认号:主机正在等待的数据的下一个字节序号

  4. 数据偏移:指TCP首部的长度,可变。默认长度为20字节

  5. 窗口:用于流量控制,用于指示接收方愿意接受的字节数量

  6. 标志字段

    • ACK:当该位为1时,确认号有效
    • RST:该位为1时,表示TCP连接中出现异常必须强制断开连接
    • SYC:该位为1时,开始建立连接,并且序号字段进行序列号初始值的设定
    • FIN:该位为1时,断开连接,通信双方相互交换FIN位置为1的TCP段后断开连接

2. TCP连接

2.1 什么是连接(connection)和会话(Session)

连接是数据传输双方的契约,在设计上,连接是一种传输数据的行为,具体来说,数据收发双方的内存中都建立一个用于维护数据传输状态的对象,比如TCP 的连接组成包括一台主机上的缓存、变量和与进程连接的套接字,以及另外一台主机上的缓存、变量和与进程连接的套接字。(由端口号和IP地址组成)所以连接是网络行为状态的记录

会话是应用的行为,比如说你在微信上给人发消息,打开应用聊天窗口和对方聊天是一个会话,但是连接只有在进行发消息、语音的时候连接才开启。其他不发消息和语音时,连接可能暂时断开,但是只要不关聊天窗口,会话时一直存在的。

总结而言,会话是应用层的概念,连接是传输层的概念,正是因为如此,在 TCP 连接的时候需要握手建立连接。

3. TCP连接建立

3.1 TCP 协议中的基本操作

也就是报文段的标志字段的含义和功能:

  • SYN(Synchronization):请求同步,一个 Host 主动向另外一个 Host 发起连接。当 SYN=1,ACK=0 时,表示这是一个请求建立连接的报文段;当 SYN=1,ACK=1 时,表示对方同意建立连接
  • PSH(Push): 数据推送,一个 Host 主动向另外一个 Host 发送数据
  • FIN(Finish): 请求完成,一个 Host 主动断开请求,如果 FIN=1,表示数据已经发送完成,可以释放连接。
  • ACK:表示前面的确认号字段是否有效。ACK=1 时表示有效。只有当 ACK=1 时,前面的确认号字段才有效。TCP 规定,连接建立后,ACK 必须为 1
  • RST:表示是否重置连接。如果 RST=1,说明 TCP 连接出现了严重错误(如主机崩溃),必须释放连接,然后再重新建立连接。

如图,开始时,两个端口都是出于closed状态,当服务器端口变成listen时,监听端口,是否有数据传来。

  1. 第一步:客户端向服务端发送一个特殊的TCP报文段。客户端进入SYN_SENT状态这个报文段有以下特点:

    • 不包含应用层数据,封装在一个IP数据报中发送给服务器
    • SYN为1(此步是ACK唯一可为0处,其他时间均为1)
    • 序号段有一个随机生成的初始序号(client_isn)
  2. 第二步:服务器端收到上步客户端的报文段后,同时为该TCP连接分配TCP缓存和变量,并向该客户发送允许连接的报文段。服务器进入SYN_RCVD状态,这个报文段特点有:

    • 不包含应用层数据
    • SYN为1,ACK为1
    • 确认号段被置为client_isn + 1,序号段被置为server_isn
  3. 第三步:客户端收到上步服务端的报文段后,客户端为该连接分配缓存和变量,同时客户端向服务器端发送报文段,这个报文端特点有:

    • 可以包含应用层数据
    • SYN为0,ACK为1
    • 确认号段被置为server_isn + 1

    两端进入ESTABLISHED状态,连接建立

4. TCP连接断开

若客户端决定要关闭该连接(服务器端也可以发起关闭)

  1. 第一次:客户端发送带有FIN被置为1的报文段,进入FIN_WAIT_1状态,并等待一个来自服务器的带有确认的TCP报文段。
  2. 第二次:服务器端收到该报文段后,向客户端发送一个确认ACK报文段,进入CLOSE_WAIT状态。
  3. 第三次:服务器端处理完数据后向客户端发送FIN被置为1的报文段,进入LAST_ACK状态。
  4. 第四次:客户端收到服务器端的FIN报文段后,向服务器端发送一个确认ACK报文段,进入TIME_WAIT状态,服务器接收到该ACK报文段后关闭,客户端在经过2MSL(与具体实现有关,典型值是20s、1分钟或2分钟)等待后关闭。

5. 关于TCP连接的面试题

5.1 如何唯一确定一个TCP连接

可以通过四个变量来确定唯一的TCP连接:源地址、源端口、目标地址、目标端口来唯一确定一个TCP连接。其中源地址和目标地址的字段在IP头部,作用是通过IP协议发送报文给哪个主机;源端口和目标端口是在TCP首部,作用是通过TCP协议发送主机中的哪个进程。

5.2 UDP和TCP有什么区别

两者的区别
  • UDP面向无连接,利用IP提供无连接的传输数据服务
  • UDP可以支持一对多、一对一、多对多的交互通信
  • UDP不保证可靠交付数据,传输过程中可能会丢包
  • UDP首部只有固定的8字节;TCP首部最短20字节,能够变化
应用场景
  • UDP用于包总量较少的通信,如DNS、SNMP;还有视频、音频等多媒体通信,以及广播通信等等
  • TCP用于需要保证可靠性数据交付的场景,比如FTP、HTTP

5.3 为什么是三次握手?

为什么TCP连接建立过程中不是两次或者四次,三次就是最优解了吗?首先来看看两次握手建立连接会发生什么。

两次握手

如果连接过程是两次握手来建立,在理想的网络环境下是可以完成通信建立的,但是现实的网络环境很复杂,有时候会导致历史的报文段比新的报文段先到达服务器端,这时,如果没有第三次握手,就会造成无法同步序列号情况的发生。举个例子,客户端发送新SYN报文段的序号是100,网络环境中有旧的SYN报文端的序号是80,然而现在旧的先到达服务器端,那么服务器端则会返回一个确认号为81的SYN+ACK报文段,这个时候客户端接收到的报文段和预期报文段会不一致,就会造成无法同步序列号,达不到TCP可靠运输的效果,也会浪费资源。那么如果有第三次握手,这时客户端会反馈一个RST报文段,终止这次连接,等待新的SYN到来,这样保证数据的可靠性传输。

四次握手

四次握手可以对比四次挥手,客户端和服务器端都要分别发送SYN和ACK报文段,来表示之前的SYN报文已经被成功接收。

然而四次握手可以简化成三次,第二、三次可以优化成一次。所以三次是保证可靠性传输连接的最优解。

5.4 什么是SYN 泛洪?如何避免

SYN泛洪攻击通过发送大量的TCP SYN报文段,而不完成第三次握手的步骤。因为大量的SYN报文段的发送,服务器不断为这些半开连接分配资源,导致服务器的连接资源被消耗殆尽。

如何避免,现在有一种有效的防御系统,称为SYN cookie,它是这样工作的:

  • 当服务器接收到一个SYN报文段时,它并不知道该报文段是来自一个合法用户还是SYN泛洪攻击的一部分。因此服务器不会为该报文段生成一个半开连接。相反,服务器会生成一个初始TCP序列号cookie值(由目的IP地址与端口号以及仅有该服务器知道的秘密数的一个复杂函数),并发送给客户端
  • 如果客户是合法的,将会返回一个ACK报文段。而且当服务器收到该ACK后,需要验证该ACK是与前面发送的SYN相对应,并生成一个具有套接字的全开的连接。如果没有返回一个ACK报文段,则初始的SYN并没有对服务器产生危害,因为服务器也没为它分配任何资源。

5.5 为什么是四次挥手

四次挥手中双方发送了FIN报文段,所以在客户端发送FIN后,服务器端接收到后首先会回一个ACK应答报文,因为此时服务器端可能还有数据没发送完,所以在服务端数据处理完后,才发送FIN报文段给客户端表示现在可以关闭连接。正是因为这个等待过程,使得比三次握手多一次。

5.6 如果已经建立了连接,客户端出现故障了怎么办?

TCP有一个机制是保活机制:定义在一个时间段内,如果没有任何连接相关的活动,TCP保活机制则开始作用,每隔一个时间间隔会发送一个探测报文,该探测报文包含的数据很少,如果连续几个探测报文都没有得到响应,说明该TCP连接已经死亡。

客户端的故障也分为这几种:

  • 对端系统正常回复探测报文,TCP保活时间重置,等待下一个保活时间到来,TCP连接正常运行。
  • 对端程序崩溃并重启,此时可以对探测报完进行响应,但是没有连接的有效消息,序列不符合,最后会产生RST报文,这时连接被重置。
  • 对端程序彻底崩溃,无法响应探测报,经过几次连续无响应后TCP会报告此连接已经死亡

5.7 为什么需要TIME_WAIT状态

首先要说明,只有主动发起关闭连接的一方才会有TIME_WAIT状态,那么为什么会有TIME_WAIT状态,这时因为在服务端关闭后,可能还会有其他的数据报未到达客户端,所以需要再等待一段时间。一般这个时间是2MSL时间,也就是报文段在两端传输的最大往返时间。

TIME_WAIT状态太多也会导致占用过多的端口资源,会导致无法创建新的连接

参考博客:

https://mp.weixin.qq.com/s/tH8RFmjrveOmgLvk9hmrkw

相关文章:

常见的几种网络抓包及协议分析工具

网络工程师必备技能-抓取网络数据。在本篇博客中,我们将集中记下几个问题进行探讨:Wireshark 是免费的抓取数据包、分析数据包的工具,兼容 Windows、Linux、Mac等主流平台。使用 wireshark 抓包需要的工具是:安装了 wireshark 的 PC。wireshark 抓包的范围是:抓取安装了 wireshark 的 PC 本机的网卡上流经的数据包。其中,网卡指的是 PC 上网使用的模块,常见的包括:以太网网卡、wifi 无线网卡,PC 分别使用它们用于连接以太网、wifi 无线网络。

手机的ip地址是固定的吗,每个手机ip地址一样吗?

简单点说,路由器开启了“DHCP功能”,会自动给连接路由器网络的设备自动分配IP地址,这包括有线网络和无线网络;当设备开启了DHCP功能之后,在路由器开启了DHCP功能的前提下,就会自动接收路由器分配的IP地址,不需要用户手动设置静态IP地址,用通俗的话来形容“DHCP”,它可以省去用户手动设置IP地址的过程。

配置nginx+keepalived高可用代理数据库ip端口

需求:配置nginx+keepalived高可用反向代理数据库ip端口(数据库服务器无法增加新SCAN IP或者需要隐藏数据库IP的情况下适用)本机ip为:192.168.20.10和192.168.20.11。2.任意节点关机或重启系统,浮动ip也会自动漂移到另外节点。1.任意节点停nginx:浮动ip会自动漂移到另外节点。安装依赖包和nginx和keepalived。浮动IP为:192.168.20.20。配置keepalived.conf。两台centos7.9。

TCP服务器最多支持多少客户端连接

本文从理论和实际两个方面介绍了一个 TCP 服务器支持的最大连接数

websocket服务端本地部署

即登录cpolar官网后,点击预留,保留一个固定tcp端口地址,然后将其配置到相应的隧道中即可。这里我们用cpolar内网穿透来映射内网端口,它支持http/https/tcp协议,不限制流量,无需公网ip,也不用设置路由器,操作简单。注意:该隧道选择的是临时tcp地址和端口,24小时内会变化,如需固定tcp地址,可升级为专业套餐做tcp地址固定!cpolar安装成功后,默认会配置两个默认隧道:一个ssh隧道和一个website隧道,可自行删减或者修改。,可以查看到token码,复制并执行命令进行认证。

mysql开启可以使用IP有权限访问

为实际的IP地址和你想要设置的密码。请小心操作,并确保你了解每个命令的作用。如果你对此有任何疑问,最好咨询经验丰富的数据库管理员。来设置或修改用户的密码。相反,你需要分两步来完成这个过程:首先创建或修改用户,并设置密码;然后授予相应的权限。用户应该能够从指定的内网IP地址访问MySQL服务器。用户已存在并且你只是想更改其密码或允许从另一个地址访问,使用。在MySQL 8.0及更高版本中,语句的语法有所变化。替换为你的内网IP地址,

Spring AOP 技术实现原理

Spring AOP的实现基于代理模式,通过代理对象来包装目标对象,实现切面逻辑的注入。通过本文,我们深入了解了Spring AOP是如何基于JDK动态代理和CGLIB代理技术实现的。通过详细的示例演示,希望读者能更清晰地理解Spring AOP的底层原理,并在实际项目中灵活应用这一强大的技术。

TCP三次握手和四次挥手

看了大量的文章都不知道ack包,fin包,syn包是干嘛的?我搜了一些概念以及总结道一起是不是更容易理解一些方便后续面试使用

WebSocket 入门实战

这个简单示例演示了如何使用 Spring Boot 和 Spring WebSocket 创建一个基本的 WebSocket 服务。通过这个例子,可以了解 WebSocket 在实时通信中的应用,如果大家在平时工作当中有遇到需要实时推送的场景,比如大屏实时展示数据变化,就可以用这种发放时。

Java基本数据类型/包装类/对象/数组默认值

不管程序有没有显示的初始化,Java 虚拟机都会先自动给它初始化为默认值。1、整数类型(byte、short、int、long)的基本类型变量的默认值为0。2、单精度浮点型(float)的基本类型变量的默认值为0.0f。3、双精度浮点型(double)的基本类型变量的默认值为0.0d。4、字符型(char)的基本类型变量的默认为 “/u0000”。5、布尔性的基本类型变量的默认值为 false。6、引用类型的变量是默认值为 null。7、数组引用类型的变量的默认值为 null。

TCP怎么保证传输过程的可靠性?

校验和发送方在发送数据之前计算校验和,接收方收到数据后同样计算,如果不一致,那么传输有误确认应答,序列号TCP进行传输时数据都进行了编号,每次接收方返回ACK都有确认序列号。超时重试这里是引用连接管理流量控制阻塞控制..._tcp传输过程可靠性

SpringBoot 使用过滤器、拦截器、切面(AOP),及其之间的区别和执行顺序

Servlet(Server Applet),全称是Java Servlet,是提供基于协议请求/响应服务的Java类。在JavaEE中是Servlet规范,即是指Java语言实现的一个接口,广义的Servlet是指任何实现了这个Servlet接口的Java类,一般人们理解是后者。是什么。

【总结】SpringBoot 中过滤器、拦截器、监听器的基本使用

拦截器是在面向切面编程中应用的,就是在你的service或者一个方法前调用一个方法,或者在方法后调用一个方法。是基于JAVA的反射机制。1)预处理preHandle()方法用户发送请求时,先执行preHandle()方法。会先按照顺序执行所有拦截器的preHandle方法,一直遇到return false为止,比如第二个preHandle方法是return false,则第三个以及以后所有拦截器都不会执行。若都是return true,则执行用户请求的url方法。2)后处理postHandle()方法。

Springboot支付宝沙箱支付---完整详细步骤

两种方式进行配置。这里我采取的是默认方式: 开发者如需使用系统默认密钥/证书,可在开发信息中选择系统默认密钥。注意:使用API在线调试工具调试OpenAPI必须使用系统默认密钥。

揭秘代理IP:原理、类型及其在大数据抓取中的作用

代理IP的原理:代理服务器作为客户端与目标网站之间的中介,当请求数据时,不是直接由用户的原始IP地址发送到目标网站,而是先发送到代理服务器。- 提升抓取效率:利用多个代理IP实现并发抓取,可以分散请求负载,提高数据采集速度,尤其是在需要大量数据或高频率访问时尤为关键。- 地域定位:某些代理IP能够提供特定地区的IP地址,这使得爬虫能够抓取特定区域的内容,比如针对不同国家或地区的本地化信息。- 绕过反爬机制:通过不断更换代理IP,爬虫可以避免因频繁访问而触发目标网站的反爬策略,从而继续高效地抓取数据。

SpringBoot--过滤器/拦截器/AOP--区别/使用/顺序

​ 本文介绍SpringMVC(SpringBoot)中的过滤器、拦截器、AOP的区别及其用法。​ 如果监听器、过滤器、 拦截器、 AOP都存在,则它们的执行顺序为:监听器 => 过滤器=> 拦截器=> AOP。

websocket介绍并模拟股票数据推流

Websockt是一种网络通信协议,允许客户端和服务器双向通信。最大的特点就是允许服务器主动推送数据给客户端,比如股票数据在客户端实时更新,就能利用websocket。

什么?Postman也能测WebSocket接口了?

作为一位过来人也是希望大家少走一些弯路,如果你不想再体验一次学习时找不到资料,没人解答问题,坚持几天便放弃的感受的话,在这里我给大家分享一些自动化测试的学习资源,希望能给你前进的路上带来帮助。

最简单的设计模式是单例?

单例模式可以说是Java中最简单的设计模式,但同时也是技术面试中频率极高的面试题。因为它不仅涉及到设计模式,还包括了关于线程安全、内存模型、类加载等机制。所以说它是最简单的吗?

基于SpringBoot的校园二手闲置交易平台

基于SpringBoot的校园二手闲置交易平台的设计与实现~

SpringBoot 中获取 Request 的四种方法

Controller中获取request对象后,如果要在其他方法中(如service方法、工具类方法等)使用request对象,需要在调用这些方法时将request对象作为参数传入。如果其他方法(如工具类中static方法)需要使用request对象,则需要在调用这些方法时将request参数传递进去。下面介绍的方法4,则可以直接在诸如工具类中的static方法中使用request对象(当然在各种Bean中也可以使用)。该方法实现的原理是,在Controller方法开始处理请求时,对象是方法参数,相当于。

Windows搭建Emby媒体库服务器,无公网IP远程访问本地影音文件

在现代五花八门的网络应用场景中,观看视频绝对是主力应用场景之一,加上移动网络技术的发展,随时随地看视频已经成为基本需求。不过,随着资本向视频应用的集中,想要看视频就必须先充会员,这让笔者很是郁闷,于是产生了自建影音云盘的想法,期间也尝试了多种影音服务器。今天,笔者就为大家介绍,如何在Windows系统中,使用Cpolar内网穿透+Emby,搭建自己的私人影音平台。到这里,我们就成功的使用cpolar+Emby搭建了专属于我们自己的私人影音库,让我们能随时随地访问到本地电脑上的影音资源。

IP地址的四大类型:动态IP、固定IP、实体IP、虚拟IP的区别与应用

这种IP地址的分配是临时性的,用户每次连接都可能获得不同的IP。了解动态IP、固定IP、实体IP和虚拟IP的区别以及各自的应用场景,有助于网络管理员和用户在不同情境下做出明智的IP地址选择,确保网络通信的稳定性和高效性。每种IP类型都有其独特的优势,根据实际需求进行选择,是网络设计和管理中的重要考虑因素。动态IP、固定IP、实体IP和虚拟IP是四种不同类型的IP地址,它们各自具有独特的特点和应用场景。实体IP:是每个设备在物理网络上的唯一标识,确保网络通信的准确性。

Nodejs+Express搭建HTTPS服务

最近开发需要搭建一个https的服务,正好最近在用nodejs和express,于是乎想到就近就使用这两东西来搭建一个https的服务吧。这里搭建过程总共需要两步,第一步生成证书,第二步使用https模块启动服务。

java中代理的实现并在spring的应用

Java代理机制是一种在运行时创建一个代理对象来代替原始对象的方法。代理对象通常用于在调用原始对象的方法之前或之后执行一些额外的操作,例如日志记录、性能监控等。

java并发编程九 ABA 问题及解决,原子数组和字段更新

它指的是一个共享变量的值在操作期间从A变为B,然后再从B变回A,而CAS操作可能会错误地认为没有其他线程修改过这个值。AtomicStampedReference 可以给原子引用加上版本号,追踪原子引用整个的变化过程,如: A -> B -> A ->C,通过AtomicStampedReference,我们可以知道,引用变量中途被更改了几次。只要有其它线程【动过了】共享变量,那么自己的 cas 就算失败,这时,仅比较值是不够的,需要再加一个版本号 AtomicStampedReference。

java并发编程八 CAS 与 volatile和原子整数与原子引用

它可以用来修饰成员变量和静态成员变量,他可以避免线程从自己的工作缓存中查找变量的值,必须到主存中获取它的值,线程操作 volatile 变量都是直接操作主存。在java并发编程七六中,可以看到的 AtomicInteger 的解决方法,内部并没有用锁来保护共享变量的线程安全。那么它是如何实现的呢?其中的关键是 compareAndSet,它的简称就是 CAS (也有 Compare And Swap 的说法),它必须是原子操作。获取共享变量时,为了保证该变量的可见性,需要使用 volatile 修饰。

Springboot应用中过滤器chain.doFilter后设置header无效&filterChain.doFilter后使用response对象引起的问题&Filter过滤器执行流程

本文是在使用过滤器添加动态header过程中遇到设置header无效,经过研究源码而产生。因为特殊需求,自定义的header必须在经过Controller处理之后,才能确定,所以不能在请求处理之前设置,必须在请求处理之后。于是出现了这个坑。

哪些大公司正在使用Go语言

随着计算机科学和软件开发的快速发展,编程语言的选择变得愈加关键。在这个多元化的编程语境中,Go语言(简称Golang)以其简洁、高效、并发处理能力等特性逐渐受到业界关注。越来越多的大型科技公司纷纷采用Go语言作为其软件开发的首选语言,这种趋势反映了Go语言在构建可靠、高性能和易于维护的系统方面的卓越表现。😊🙏如果大家对相关文章感兴趣,可以关注公众号"架构殿堂",会持续更新AIGC,java基础面试题, netty, spring boot, spring cloud等系列文章,一系列干货随时送达!

java并发编程七 无锁解决加锁问题

有如下需求,保证 account.withdraw 取款方法的线程安全。首先想到的是给 Account 对象加锁。原有实现并不是线程安全的。withdraw 方法。