最近研究检测实现,稍微总结一下,以后继续补充:
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>using namespace cv;
using namespace std;//全局变量
Mat src1, src1_gray,src2, src2_gray;int maxCorners = 23;
int maxTrackbar = 100;char* source_window1 = "src1";
char* source_window2 = "src2";void goodFeaturesToTrack_Demo( int, void* )
{//参数初始化if(maxCorners < 1)//允许返回的最多角点个数maxCorners = 1;vector<Point2f> corners1,corners2;//角点容器double qualityLevel = 0.01;//最小特征值小于qualityLevel*最大特征值的点将被忽略double minDistance = 10;//两角点间最小距离int blockSize = 3;//邻域尺寸bool useHarrisDetector = false;//是不是使用Harrisdouble k = 0.04;//拷贝原图Mat src1_copy = src1.clone();Mat src2_copy = src2.clone();//调用函数停止Shi-Tomasi角点检测goodFeaturesToTrack( src1_gray,corners1,maxCorners,qualityLevel,minDistance,Mat(),blockSize,useHarrisDetector,k );goodFeaturesToTrack( src2_gray,corners2,maxCorners,qualityLevel,minDistance,Mat(),blockSize,useHarrisDetector,k );//画出角点cout<<"角点个数:"<<corners1.size()<<endl;//等于maxCornersfor( int i = 0; i < corners1.size(); i++ ){circle( src1_copy, corners1[i], 4, Scalar(0,255,0),2);circle( src2_copy, corners2[i], 4, Scalar(0,255,0),2);}//表现图像imshow( source_window1, src1_copy );imshow( source_window2, src2_copy );
}int main()
{//加载源图并转换为灰度图src1 = imread("horse1.jpg");src2 = imread("horse2.jpg");cvtColor( src1, src1_gray, CV_BGR2GRAY );cvtColor( src2, src2_gray, CV_BGR2GRAY );//创立窗口namedWindow( source_window1, CV_WINDOW_AUTOSIZE );namedWindow( source_window2, CV_WINDOW_AUTOSIZE );//创立滑块条,调节允许的角点个数createTrackbar( "角点个数:", source_window1, &maxCorners, maxTrackbar, goodFeaturesToTrack_Demo );goodFeaturesToTrack_Demo( 0, 0 );waitKey(0);return(0);
}
时间好比一条小溪,它能招引我们奔向生活的海洋;时间如同一叶扁舟,它将帮助我们驶向理想的彼岸;时间犹如一支画笔,它会指点我们描绘人生的画卷。
效果图:
文章结束给大家分享下程序员的一些笑话语录: 很多所谓的牛人也不过如此,离开了你,微软还是微软,Google还是Google,苹果还是苹果,暴雪还是暴雪,而这些牛人离开了公司,自己什么都不是。
--------------------------------- 原创文章 By
检测和实现
---------------------------------